آریا صنعت آفاق | مقالات و انتشارات

جوشکاری زیر پودری

۲۴ اردیبهشت ۱۳۹۱

جوش زیر پودری یک فرایند جوش قوس الکتریکی است که در آن گرمای لازم برای جوشکاری توسط یک یا چند قوس بین یک فلز پوشش نشده، یک یا چند الکترود مصرفی و یک قطعه کار تامین می شود. در این روش نوک الکترود داخل پودری از مواد معدنی ویژه قرار می گیرد و قوس در زیر این پودر در امتداد مسیر جوشکاری تشکیل می شود. در این روش قوس قابل مشاهده نیست. درسیستم زیرپودری از سیم بدون روکش استفاده می شود، طوری که سیم به طور متوالی از قرقره مخصوص رهامی گردد و ضمن تشکیل قوس نقش واسطه اتصال را نیز بر عهده دارد.  قوس توسط لایه ای از فلاکس پودری قابل ذوب شدن که فلز جوش مذاب و فلز پایه نزدیک اتصال را پوشانده، و فلز جوش مذاب را از آلودگی های اتمسفر حفاظت می کند پوشیده می شود.

اصول عملیات

درجوش زیر پودری جریان الکتریکی از قوس و حوضچه مذاب جوش که ترکیبی از فلاکس مذاب و فلزجوش مذاب است می گذرد. فلاکس مذاب معمولا، هادی خوب جریان الکتریسته است، در حالی که فلاکس سرد هادی نیست. پودر جوش می تواند اکسیدزداها و ناخالصی زداهایی که با فلز جوش واکنش شیمیایی می دهند را نیز تامین کند علاوه براینکه یک لایه محافظ ایجاد می کند. فلاکس های جوش زیر پودری فولادهای آلیاژی همچنین می توانند حاوی عناصر آلیاژی برای بهبود ترکیب شیمیایی فلز جوش باشند. جریان الکتریکی از یک ژنراتور (ترانسفورماتور یا رکتی فایر) تامین شده، از اتصالات عبور می کند تا قوسی را بین الکترود و فلز پایه بر قرار کند را ذوب می کند که حوضچه مذاب را برای پرکردن اتصال تشکیل دهند. درکلیه انواع تجهیزات، غلطک های هدایت با نیروی مکانیکی بطور پیوسته سیم الکترود مصرفی فلزی را از میان لوله تماس (نازل) و توده فلاکس به اتصالی که باید جوش شود می راند. سیم الکترود عموما یک فولاد کم کربن با ترکیب شیمیایی دقیق که در یک قرقره یا بشکه پیچیده شده می باشد. سیم الکترود در منطقه جوش ذوب شده و در طول اتصال رسوب می کند. فلاکس دانه ای در جلوی قوس ریخته شده و پس از انجماد فلز جوش، فلاکس ذوب نشده توسط سیستم مکش جمع کننده برای استفاده مجدد جمع آوری می شود. در جوش خودکار بازیابی فلاکس مجموعه ای از تجهیزات و یک لوله بازیابی فلاکس که درست پس از لوله تماس قرار گرفته است می باشد. جوش زیر پودری به هر دو روش نیمه خودکار و خودکار قابل انجام بوده و روش خودکار بخاطر مزایا بیشتر، استفاده گسترده تر دارد. در روش نیمه خودکار جوشکار بصورت دستی یک تفنگ جوشکاری (به انضمام مخزن فلاکس) که فلاکس و الکترود را به محل اتصال تغذیه می کند را هدایت کرده و خودش سرعت حرکت را کنترل می کند. در روش جوش کاملا خودکار دستگاه بصورت خودکار الکترود و فلاکس را در طول مسیر جوش تغذیه و هدایت کرده و نرخ رسوب را کنترل می کند. در کاربردهای خاصی جوش خودکار زیر پودری دو یا چند الکترود بصورت متوالی در یک اتصال تغذیه می شوند. الکترودها ممکن است کنار یکدیگر بوده و به یک حوضچه تغذیه شوند یا اینکه به اندازه کافی فاصله داشته تا پس از انجماد یکی حوضچه دیگری تشکیل شود و مستقل منجمد شوند. روش جدیدتر جوش قوس های پشت سرهم است که جوش چند پاس را دریک شیار اتصال برای افزایش سرعت حرکت و نرخ رسوب جوشکاری تامین می کند.

مزایا و محدودیت ها
روش های خودکار و نیمه خودکار جوش زیر پودری در مقایسه با سایر روش های جوشکاری مزایا و معایب زیر را دارند:
اتصالات را می توان با شیار کم عمق آماده نموده که باعث مصرف کمترفلز پرکننده می شود (در برخی کاربردها نیازی به شیار برای اتصالات بین ورق های با ضخامت کمتر از ۴/۱ نیست).
پوشش برای حفاظت اپراتور از قوس نیاز نیست، اگرچه حفاظت چشمان اپراتور بخاطر احتمال پرتاب جرقه جوش توصیه می شود.
جوش را می توان با سرعت حرکت و نرخ رسوب بالا و برروی سطح صاف یا استوانه ای یا لوله و از نظر تئوری با هر اندازه و ضخامتی انجام داد. این روش برای سخت کردن سطحی نیز مناسب است.
فلاکس به عنوان اکسیدزدا و آخال زدا برای خارج کردن ترکیبات ناخواسته از حوضچه جوش عمل می کند تا جوش سالم و باخواص مکانیکی مناسب ایجاد کند.
سیم های الکترود ارزان برای جوش فولادهای غیرآلیاژی و کم کربن استفاده می شوند. (معمولا سیم های فولادی کم کربن بدون پوشش یا با پوشش نازک مسی برای هدایت بهتر و جلوگیری از خوردگی می باشند).
جوش زیر پودری را می توان در زیر وزش بادهای نسبتا شدید جوشکاری نمود. ذرات فلاکس حفاظت بهتری انجام می دهند تا پوشش الکترود در روش جوشکاری الکترود دستی.

محدودیتهای جوش زیر پودری که برخی در روش های دیگر جوشکاری نیز وجود دارند به شرح زیر است:
پودر جوش ممکن است به آلودگی هایی آغشته شود که باعث تخلخل جوش شوند.
برای دستیابی به یک جوش خوب فلز پایه باید، یکنواخت بدون پوسته اکسیدی، زنگ، غبار و روغن و سایر آلودگی ها باشد.
جداشدن سرباره از جوش در برخی موارد به سختی صورت می گیرد. در جوش های چند پاس پس از هر عبور باید سرباره جوش برداشته شود تا از باقی ماندنش درون فلز جوش جلوگیری شود.
این روش معمولا برای جوش فلزات با ضخامت کمتر از ۳/۱۶، بخاطر Burn Through  مناسب نمی باشد.
مگر در کاربردهای خاص شدیدا به مسطح بودن وضعیت جوشکاری محدود است، زیرا مسطح بودن و افقی بودن وضعیت برای جلوگیری از ریختن فلاکس لازم است.

فلزات مناسب جوش زیر پودری
جوش زیر پودری برای همه فلزات و آلیاژها مناسب نیست. برای سهولت فلزات و آلیاژها را می توان با توجه به مناسب بودن آنها برای جوش زیر پودری به سه دسته تقسیم کرد:
فلزات بسیارمناسب
فلزات اندکی مناسب
فلزات غیرمناسب
فلزات بسیار مناسب: جوش زیر پودری بیشترین استفاده را در جوش فولادهای غیرآلیاژی فولاد ساده کم کربن دارد. اغلب مثال های این مقاله به این فولادها مربوط است، که محدوده تنش تسلیم آنها حدود ۴۵۰۰۰  تا ۸۵۰۰۰ Psi است و معمولا با فلاکس و الکترود  AWS 15.17 – ۶۹ (مشخصات فنی فلاکس ها و الکترودهای فولادهای آرام ساده برای جوش قوس زیر پودری) جوش می شوند. فولادهای کربن متوسط و کم آلیاژ ساختمانی در رده فولادهای مناسب جوش زیر پودری هستند اگرچه اغلب به پیش گرم، پس گرم و استفاده از فلاکس و سیم الکترودهای ویژه نیاز دارند. فولاد ضد زنگ، فولاد کربنی آلیاژی قابل سخت شدن، و فولاد ساختمانی پراستحکام نیز با روش جوش زیر پودری جوشکاری می شوند. جوش زیر پودری همچنین برای ایجاد پوشش های مقاوم به سایش برای موقعیت هایی که تحت سایش هستند بکار می رود.
فلزات اندکی مناسب : برخی فلزات و آلیاژهایی را که می شود به روش جوش زیر پودری جوش داد، بیشتر با روش هایی جوش می دهند که منطقه حرارت داده شده باریک تر باشد. برخی فولادهای ساختمانی پراستحکام کم کربن جزء این گروه هستند زیرا استحکام ضربه و کشش مورد نیاز در روش جوش زیر پودری به سختی بدست می آیند. فولادهای پرکربن، فولادهای مار تنزیتی، و مس و آلیاژهای مس نیز جزء این گروه هستند.
فلزات نامناسب: چدن را معمولا نمی توان به روش جوش زیر پودری جوش داد، زیرا نمی تواند تنش های حرارتی ناشی از گرمای ورودی را تحمل کند. مسائلی که در جوش فولاد آستنیته منگنزی و فولاد ابزار پرکربن رخ می دهند جوشکاری آنها را با هر روش معمولی دشوار می سازد. آلیاژهای آلومینیوم و آلیاژهای منیزیوم را نمی توان به روش زیر پودری جوش داد زیرا فلاکس مناسب برای آن پیدا نمی شود. سرب و روی بخاطر نقطه ذوب پایین مناسب جوش زیر پودری نیستند. تیتانیوم در کاربردهای آزمایشگاهی به روش زیر پودری جوشکاری شده ولی فلاکس مناسب برای جوش آن تاکنون ارائه نشده است.

جنبه های متالورژیک
سه ویژگی جوش زیر پودری در جریان های بالا نیازمند توجه ویژه است :

  • در صد بالای فلز پایه در جوش هنگامی که قطب معکوس جریان مستقیم استفاده شود
  • مقدار زیاد سرباره تولید شده در عملیات
  • گرمای ورودی زیاد که ریز ساختار را تحت تاثیر قرارمی دهد

هنگامی که درصد فلز پایه در رسوب فلز جوش بالا باشد، به حداقل رساندن ناخالصی های مضر مانند فسفر و گوگرد بسیار اهمیت دارد. مقدار زیاد سرباره عموما منبعی از سیلیسیم یا منگنز است که ممکن است مقداری از آن به رسوب فلزجوش منتقل شود. لذا معمولا هنگام استفاده از فلاکس های پرسیلیسیم، از سیم الکترود کم سیلیسیم (حداکثر ۰٫۰۵% سیلیسیم) استفاده می شود تا از جذب سیلیسیم اضافی توسط فلز جوش جلوگیری شود. همچنین از سیم الکترود کم منگنز حاوی کمتر از ۰٫۵% منگنز معمولا با فلاکس های پر منگنز استفاده می شود. سیم الکترود پرمنگنز حاوی ۲% منگنز عموما با فلاکس های کم منگنز استفاده می شوند. گرمای ورودی زیادی که از جوشکاری در جریان زیاد ناشی می شود (تا حدود ۱۵۰۰ آمپر) در سرعت های حرکت پایین باعث تغییر ساختار در منطقه متاثر از حرارت شده و استحکام ضربه را کاهش و استحکام کششی و دمای تبدیل تردی به نرمی را افزایش می دهد.

تغییرات ریز ساختار
افزایش تغییرات ساختار فلز پایه به عوامل زیر وابسته است:

  • حداکثر دمایی که فلز در آن قرارداده می شود
  • زمان آن دما
  • ترکیب شیمیایی فلز پایه

سرعت سرد شدن ساختار فلز جوش ستونی است زیرا از مرز جامد شروع شده و فقط در یک جهت امکان رشد دارد. در فولاد کربنی قابل سخت شدن امکان درشت شدن ساختار منطقه نزدیک قسمت جوش از فلز پایه بخاطر رسیدن به دمای حدود ۲۸۰۰ تا ۲۲۰۰ فارنهایت وجود دارد. فلزی که در دمای ۱۷۰۰ تا ۲۲۰۰ فارنهایت گرم شده نواری از دانه های نازک تر دارد. اگرچه این منطقه در بیشتر از دمای دگرگونی فاز گرم شده، ولی زمان باقی ماندن در این دما برای درشت ساختار شدن کافی نبوده است.
منطقه بعدی ۱۷۰۰ تا ۱۴۰۰ فارنهایت، منطقه ای است که فولاد باز پخت شده و به مقدار قابل توجهی نرم تر از منطقه مجاور جوش است. فلز پایه دورتر از این منطقه نیز تغییر نکرده باقی می ماند. اندکی کاربید کروی شده بخاطر باقی ماندن در حدود ۱۳۳۰ فارنهایت، ممکن است ایجاد شود.
پیش گرم و پس گرم کردن
اصول پیش گرم کردن و پس گرم کردن برای جوش زیر پودری مشابه سایر روش های جوشکاری است. پیش گرم و پس گرم برای فولادهای سختی پذیر، مخصوصا فولادهایی که کربن آنها از حدود ۰٫۳% و ضخامت آنها بیشتر از ۴/۳ باشد بکار می رود. کاهش سرعت سردشدن که در اثر پیش گرم رخ می دهد، زمان ماندگاری در دمای بالاتر از شروع تغییر حالت مارتنزیتی را افزایش می دهد و لذا تغییر حالت آستنیت به پرلیت ظریف تر بجای مارتنزیت سخت را افزایش می دهد. در منطقه جوشی که پیش گرم شده نسبت به جوش پیش گرم نشده احتمال کمتری وجود دارد که فاز سخت تشکیل شود. همچنین بخاطر سرعت سرد شدن کمتر در فولاد های پیش گرم شده، خطر ترکیدگی جوش و تنش های حرارتی کاهش پیدا می کند. پس گرم کردن هنگام نیاز به تنش زدایی حرارتی، بازپخت، نرمالایز کردن یا تمپرکردن بکارمی رود.

منابغ تغذیه
منابع تغذیه جوش زیر پودری عبارتند از:

  • موتور ژنراتور و ترانسفورماتور رکتی فایر، با خروجی جریان مستقیم (DC)
  • ترانسفورماتور با خروجی جریان متناوب (AC)

هر دو جریان های مستقیم و متناوب درجوش زیر پودری نتایج قابل قبولی ارائه می دهند. اگرچه هر کدام در برخی کاربردهای خاص معایب ناخواسته ای دارن.  بسته به شدت جریان، قطر سیم الکترود، و سرعت حرکت  که در لیست زیر ذکر شده اند:

  • جوش نیمه خودکار با الکترود ۶۴/۵ یا ۳۲/۳ در جریان مستقیم ۳۰۰ تا ۳۵۰ آمپر، استفاده از جریان مستقیم ارحج است.
  • جوش خودکار با یک الکترود در جریان پایین (۳۰۰تا ۵۰۰ آمپر) و سرعت حرکت بالا ( ۴۰ تا ۲۰۰ اینچ در دقیقه)، استفاده از جریان مستقیم ارحج است.
  • جوش خودکار با یک الکترود و جریان متوسط (۶۰۰ تا ۹۰۰ آمپر) سرعت حرکت ۱۰ تا ۳۰ اینچ در دقیقه، هم جریان مستقیم و هم متناوب استفاده می شوند.
  • جوش خودکار با یک الکترود و جریان بالا (۱۲۰۰ تا ۲۱۵۰۰ آمپر) سرعت حرکت ۵ تا ۱۰ اینچ در دقیقه، استفاده از جریان متناوب ارحج است.
  • جوش خودکار با بیش از یک الکترود و در حالت پشت سرهم و جریان هر کدام از الکترودها ۵۰۰ تا ۱۰۰۰ آمپر با هم الکترودها، جریان متناوب (یا جریان مستقیم در الکترود جلویی) استفاده می شود.
  • جوش خودکار با دو الکترود در عرض هم، باهر دو جریان مستقیم و جریان متناوب استفاده می شود.

سیستم های تغذیه سیم جوش
تجهیز تغذیه سیم الکترود جوش زیر پودری از دو نوع سیستم کنترلی برای کنترل سرعت تغذیه سیم (سیستم های حساس به ولتاژ و سیستم های سرعت ثابت) استفاده می کنند. سیستم های کنترلی حساس ولتاژ با منبع تغذیه های جریان ثابت و سیستم های کنترل سرعت ثابت با منبع تغذیه های ولتاژ ثابت استفاده می شوند

سیم الکترود جوش زیر پودری
سیم های الکترود جوش زیر پودری فولاد در اندازه های مختلف تولید می شوند. پوشش نازکی از مس برای بهبود هدایت الکتریکی و بالا بردن مقاومت در برابرخوردگی بر روی سیم ایجاد می شود.ترکیب شیمیائی سیم الکترود به ترکیب شیمیائی فلز جوش و خواص مکانیکی و انتخاب نوع خاص الکترود و ترکیب آن به جنس فلز قطعه و نوع فلاکس وابسته است. برای رسیدن به نرخ رسوب بالاتر می توان از دو یا چند الکترود نازک تر بجای یک الکترود ضخیم تر استفاده کرد. کاهش قطر الکترود باعث افزایش چگالی جریان و فشار پلاسما جهت و افزیش عمق نفوذ و باریک شدن باند جوش می شود.
الف) همه الکترودها علاوه برمقادیر جدول حداکثر دارای ۰٫۰۳۵% گوگرد، ۰٫۰۳% فسفر، ۰٫۱۵% مس (غیراز پوشش) و % ۰٫۰۵% سایر عناصر می باشند.
ب) به علاوه حاوی ۰٫۰۵ – ۰٫۱۵ % تیتانیوم، ۰٫۰۲ – ۰٫۱۲% زیرکونینوم، ۰٫۰۵% – ۰٫۱۵%  آلومینیوم و تا ۰٫۵% سایر عناصر نیز می باشد. ساده ترین روش برای جلوگیری از تشکیل پرلیت و فریت گوشه دار استفاده از حدود ۰٫۵% مولیبدن و ۰٫۰۲% بر در ترکیب فولاد است، که با کاهش آهنگ تشکیل محصولات دگرگونی در دمای بالا باعث ایجاد فاز بینیت می شود. لذا استحکام کششی و تسلیم را افزایش می دهد.

پودرهای جوش زیر پودری
تجهیزات حمل فلاکس و سازه نگهدارنده مخزن پودر، اتصالات دیگر و همچنین صفحه نوار یا حلقه پشتبند نیز مورد نیاز می باشد. پودرهای جوش زیر پودری به سه شکل وجود دارند:

  • پودرهای ترکیب شده
  • پودرهای چسبیده شده
  • پودرهای آگلومره

پودرهای ترکیب شده : برای تولید پودرهای ترکیب شده ابتدا اجزاء بصورت خشک مخلوط سپس دریک کوره الکتریکی ذوب و با پاشش آب سرد یا ریختن روی صفحه سرد منجمد می شود. مزایای این نوع پودر عبارت است از :

  • کاملا توزیع ترکیب شیمیائی یکنواخت دارند.
  • می توان خاکه آن را بدون تغییر در ترکیب شیمیایی جدا کرد.
  • محصول رطوبت گیر نیست و مسائل ذخیره سازی و نگهداری ساده تر دارد.
  • پودرهای ذوب نشده را می توان چندین دور مورد استفاده قرار داد (بدون تغییر قابل توجه).
  • مناسب برای جوشکاری با بیشترین سرعت

محدودیت: محدودیت مهم این پودر ها عدم امکان افزودن اکسید زداها و فرو آلیاژها بخاطر دمای حلالیت بالای آنها است.
پودرهای چسبیده شده: برای تولید پودرهای چسبیده شده مواد خام تا اندازه  D * 100 آسیاب می شوند. بصورت خشک با هم مخلوط شده و با افزودن سیلیکات پتاسیم یا سیلیکات سدیم به هم چسبیده می شوند. مخلوط حاصل به شکل گلوله درآمده و در دمای پایین خشک می شوند و بصورت مکانیکی خرد شده و دانه بندی می شوند.
مزایا :بخاطر دمای تولید پایین، اکسید زداها و فرو آلیاژها دراین روش قابل افزوده شدن هستند.*چگالی پودر پایین تر است و امکان استفاده از لایه ضخیم تر فلاکس برروی منطقه جوش وجود دارد. -سرباره ایجاد شده بر روی جوش پس از سردشدن بهتر جدا می شود
محدودیت : محدودیت های مهم این روش عدم امکان جداکردن خاکه بدون تغییر در ترکیب شیمیایی و حساسیت بالا به جذب رطوبت است.
پودرهای آگلومره : روش تولید مشابه پودرهای چسبیده شده است غیر از اینکه از یک الک سرامیکی استفاده می شود. در این نوع پودر نیز برای استفاده از اکسید زداها و فرو آلیاژها بخاطر دمای  Curing بالای الک (oc 1400) مانند پودرهای ترکیب شده محدودیت وجود دارد.
دانه بندی: اندازه دانه های پودر جوش بخاطر تاثیر برمصرف بهینه پودر جوش در جریان های جوش مختلف حائض اهمیت است. در جریان های بیشتر از ۱۵۰۰ آمپر باید از درصد ذرات ریز بیشتر و ذرات درشت کمتر استفاده کرد. پودرهای چسبیده شده که در جریان های کمتر استفاده می شوند بستگی کمتری به اندازه ذرات دارند و عمدتا در یک سایز تولید می شوند. حداکثر جریان مناسب برای این نوع پودر ۸۰۰ تا ۱۰۰۰ آمپر است. در حالی که برخی انواع پودر ترکیب شده (انواع سیلیکات کلیسم اصلاح شده ) را تا ۲۰۰۰ آمپر نیز می توان بکار برد.

ترکیب پودرهای جوش
در زمان پیشرفت فرایند جوش زیر پودری در اواسط دهه ۱۹۳۰ پودرهای ترکیب شده حاوی ترکیبات سیلیکاتی استفاده می شدند که عمدتا حاوی آلومینا سیلیکات منیزیم، کلسیم و منگنز بودند. برای تنظیم محدوده ذوب و ساختار آن از دیاگرام MnO – SiO2  استفاده می شد. نتیجه جوشکاری با پودرهای چسبیده شده تقویت شده، پس از ذوب و انجماد جوش در فلز جوش مشابه پودر ترکیب شده است. فروسیلیم و اکسید منگنز و سیلسیم فلاکس ترکیب می شوند. لذا مقدار MnO نسبت به SiO2  که برای جوش زیر پودری مناسب است در قسمت جوش باقی می ماند. انواع پودرهایی که توضیح داده شده برای دستیابی به خواص پیشرفته تر و هزینه اقتصادی تر و ظاهر مناسب تر گرده جوش در مقادیر کمتر منگنز اصلاح شده اند. برخی ترکیبات پودرها با بازیسیته بیشتر (که مقادیر CaF2، CaO دارند) خواص مکانیکی بهتری در فلز جوش ارائه می دهند و افزودن تیتانیوم پایداری قوس بیشتر و اکسید فلزات خاص ظاهر جوش را در فولادهای آلیاژی بهبود می دهند. برای رسیدن به ظاهر جوش مناسب در جوشکاری پرسرعت ورق ها خواص دمایی گرانروی فلاکس را باید تنظیم کرد. فلاکس های کاربردهای خاص برای منظورهای خاص طراحی می شوند.

مقایسه پودر جوش زیر پودری با پوشش الکترود
پودرهای جوش زیر پودری در مقایسه با مواد بکار رفته در پوشش الکترودهای جوشکاری الکترود دستی چند تفاوت عمده دارند. فلاکس های جوش الکترود دستی حاوی ترکیباتی مانند سلولز برای ایجاد گاز محافظ است. همچنین ترکیباتی با تابع کاری پایین مانند اکسید سدیم و اکسید پتاسیم برای کمک به شروع قوس و پایداری آن و مواد دیگری برای تقویت نفوذ، نرخ ذوب و استفاده از قطب های مختلف جریان به پوشش الکترود اضافه شوند. که پودرهای جوش زیر پودری غالبا به این ترکیبات نیازی ندارند، زیرا وجود سرباره مذاب و دانه های کروی پودر از قوس حفاظت کرده و نیازی به گاز محافظ نیست. وجود ترکیبات سیلیس و فلوراید عموما پایداری مطلوب قوس را تضمین می کند و حداقل %۱۰ فلوراید کلسیم برای بهبود سیالیست فلاکس مذاب به سیلیکات های فلزی پودر اضافه می شوند. پوشش های الکترود های جوش قوس الکترود دستی بخاطر اینکه باید قابل اکسترود باشد و سایر ملزومات تولید دارای فرمول پیچیده اند وبرعکس آن پودرهای جوش زیر پودری ازترکیبات معدنی ساده و از سیستم های دوتایی، سه تایی و یا چهار تایی انتخاب می شوند. رایج ترین فلاکس ها از سیستم MnO – SiO2  و یا  CaO – SiO2 تشکیل شده اند که می توانند با اکسیدهای آلومینیم، منیزیم، زیرکونیوم و تیتانیوم ترکیب شود و فلاکس های کاربردهای خاص را به وجود آورند. فلاکس های الکترودهای پوشش و فلاکس های جوش زیر پودری به روش های متفاوتی دسته بندی می شوند. استاندارد  AWS A5.1-6 الکترودها را برحسب نوع مواد پوشش فلاکس دسته بندی می کند. و استاندارد  A 5.1 7-69 برای دسته بندی پودر جوش زیر پودری به طبیعت شیمیایی فلاکس ارتباطی ندارد فقط به خواص مکانیکی رسوب جوش که با الکترود مخصوص به وجود می آید مربوط است. در عمل بیشتر الکترود و فلاکس جوش زیر پودری از روی ظاهر جوش انتخاب می شوند تا در نظر گرفتن جنبه های فنی.

نقطه ذوب و نرخ ذوب پودرهای جوش
یک پودر جوش موثر باید دردمای بالا به خوبی سیال باشد و لایه روان و محافظ برروی فلز جوش ایجاد نماید و آنرا از اکسید شدن حفاظت کرده ولی در دمای اتاق ترد باشد و به آسانی از روی جوش جدا شود. نقطه ذوب و چگالی فلاکس نیز باید کمتراز فلز جوش باشد که گازهای تولید شده بین فلز و سرباره بتوانند وارد سرباره شوند و برای تکمیل وظیفه سرباره سازی باید فلاکس پس از تکمیل انجماد فلز جوش منجمد شود. لذا حد بالایی دامنه ذوب پودر جوش زیر پودری حدود ۱۳۰۰ درجه سلسیوس می باشد. مقدار فلاکس ذوب شده در هر دقیقه به ولتاژ و جریان جوش بستگی دارد و در جریان ثابت مقدار پودر ذوب شده در هر دقیقه با افزایش ولتاژ جوش افزایش می یابد. در عمل معمولا وزن فلاکس ذوب شده و وزن الکترود ذوب شده برابرند.

تاثیر فلاکس بر ترکیب فلز جوش
واکنش های بین فلز جوش مذاب و پودر جوش ذوب شده در ضمن جوشکاری زیر پودری شبیه واکنش بین مذاب و سرباره در فولاد سازی است. و لذا وظیفه سرباره مذاب کاهش ناخالصی های فلز جوش و تامین عناصری مانند منگنز و سیلیکون برای فلز جوش است. چنانچه در قسمت الف شکل ۴ مشاهده می شود با افزایش MnO  درسرباره تا حدود ۱۰ درصد مقدار منگنز فلز جوش افزایش سریع دارد که به تدریج مقدار این افزایش کم می شود. لذا بسیاری از فلاکس ها حاوی حدود %۱۰ اکسید منگنز است. رابطه مقدار SiO2  موجود در فلاکس و مقدارSi فلز جوش متفاوت است و تا هنگامی که SiO2 موجود در سرباره حدود %۴۰ باشد سیلیسم اندکی جذب نمی شود لذا فلاکس های تجاری و مخصوصا فلاکس هایی که برای جوش های با چند پاس تولید می شوند مقدار زیاد حدود %۴۰، SiO2 دارند. برخی فلاکس ها می توانند فروآلیاژها را برای جوش تامین کنند. اکسیدهای فلزی موجود در پودر مانند NiO، MnO3، Cr2O3 باعث انتقال عناصر فلزی از سرباره به فلز جوش شوند. مقدار Cr2O3  فلاکس، ترکیب الکترود، ترکیب فلز پایه ای که بر روی آن فلز جوش رسوب می کند بر مقدار سیلیسم باقی مانده در فلز جوش تاثیر می گذارند.همه عواملی که زمان واکنش فلز – سرباره یا متوسط دمای حوضچه جوش را تغییر دهد، برتوزیع عناصر آلیاژی باقی مانده در فلز جوش تاثیر خواهد گذاشت. در شرایط طبیعی جوشکاری، سرعت حرکت مهمترین عامل در رسوب عناصر آلیاژی است و نیز افزایش ولتاژ عموما باعث افزایش عناصر فلزی منتقل شده به فلز جوش می شود.

گرانروی و هدایت سرباره ها
برای اینکه فلاکس در برابر نفوذ گازهای اتمسفری مقاوم باشد باید گرانروی آن در منطقه جوش به اندازه کافی بالا باشد که در ضمن بتواند از سرریز شدن فلز مذاب و حرکت آن به سمت جلوی قوس که ممکن است باعث حبس سرباره در زیر فلز جوش مذاب شود جلوگیری کند. از طرف دیگر به اندازه کافی سیال باشد که حل شدن سریع اجزاء غیر فلزی مانند اکسیدها و خارج شدن گازها از فلز مذاب را ممکن سازد. ویسکوزیته فلاکس مذاب در دمای ۱۴۰۰ oC در حدود ۲ تا ۷ poises  می باشد. دانه های پودر جوش در دمای اتاق عایق الکتریکی هستند و مقاومت آنها با افزایش دما کاهش می یابد و سرباره های مذاب در دمای حوضچه جوش بسیار هادی هستند.
روابط الکتریکی :روابط الکتریکی منطقه جوش توسط نوع فلاکس و روش جوشکاری تعیین می شود. بررسی های نوسان نگاری، اسپکتوگرافیک و رادیو گرافیک، قوس طبیعی را در هنگام جوشکاری زیر پودری نشان می دهند. برای محاسبه روابط الکتریکی ثبت ولتاژ در بررسی های نوسان نگاری مهمترین عامل است.
شرایط جوش: دانسیته جریان الکتریسته در سیم الکترود جوش زیر پودری در مقایسه با مقدار آن در جوش الکترود دستی چندین برابر بزرگتر و نرخ ذوب و سرعت جوشکاری نیز بیشتر است. ارتباط بین ولتاژ معمول تجهیزات صنعتی و جریان نشان داده شده است. برای این داده ها فرض شده که هر یک از تنظیمات جریان جوشکاری دامنه ای حدود ۱۰ ولت دارد، که در این محدوده جوش سالم در ولتاژهای بالاتر گرده جوش پهن تر و در ولتاژهای پایین تر گرده جوش باریکتر می دهند. در ولتاژ جوشکاری و مجموع و پتانسیل کاتد و آند با افزایش جریان جوشکاری افزایش می یابند. و در هر جریانی با کاهش ولتاژ و یا مجموع پتانسیل کاتد و آند مقدار پودر ذوب شده کاهش می یابد و به صفر نزدیک می شود. خطی نبودن کاهش پتانسل کاتد و آند نشان دهنده وجود هدایت الکترولیتی است. حداکثر سرعت جوشکاری قابل استفاده برای جوشکاری بدون عیب و رفتار پایدار، با جریان جوشکاری تغییر می کند. هنگامی  Undercut رخ می دهد که جوشکاری در سمت راست خط مورب انجام شود. مثلا جوش تک پاس را در ورق های به ضخامت ۱ اینچ را می توان با ۱۵۰۰ آمپر و با سرعت ۱۰ اینچ در دقیقه جوش داد.
فاصله نازل : فاصله بین سطح فلز پایه و نوک لوله تماس (نازل) در گرمای وارده به جوش و لذا نرخ ذوب تاثیر می گذارد. زیرا نرخ ذوب الکترود جوش مجموع ذوب شدن براثر گرمای قوس و ذوب شدن براثر گرمای مقاومت الکتریکی (I2R) در طول الکترودی که از نازل خارج شده است می باشد. بسته به طرح اتصال و طول قوس، انتهای الکترود ممکن است بالاتر، هم سطح یا زیر سطح بالایی فلز پایه باشد. نرخ ذوب ناشی از گرمای مقاومتی I2R  در الکترود تابع نمایی از طول الکترود بین نازل و قطعه کار، جریان و قطر الکترود می باشد. افزایش مقدار ذوب بر اثر گرمای مقاومتی به شدت جریان و طول الکترود خارج از نازل وابسته است، که هر دو تابعی از قطر الکترود می باشند
نفوذ :نفوذ، عمق تشکیل رسوب جوش درشیار یا سطح فلز پایه است که معمولا فاصله زیرسطح اصلی است، که فلز آن ذوب شده است. ولتاژ کم اهمیت ترین و جریان جوشکاری مهمترین عامل در محاسبه نفوذ و سرعت جوشکاری است. تاثیر متقابل ولتاژ، جریان و سرعت حرکت جوش بر مقدار نفوذ که از چندین آزمایش زیر پودری بدست آمده اند. برای سایر فرایندهای جوش قوس،  GMAW و SMAW نیز رابطه خطی مشابهی بدست آمده است. شیب این خط مورب در فرایندهای مختلف متفاوت است و بیشترین مقدار آن مربوط به فرایندهایی است که از گازهای محافظ هلیم یا CO2 استفاده می کنند. ظرفیت حرارتی فلز جوش مذاب برای محاسبات گرمای ورودی و سرعت سردشدن دارای اهمیت هستند و با مقطع عرضی گرده جوش که نشان دهنده مقدار فلزی است که برای ذوب شدن گرم می شود، متناسب است. بازده تولید برای هر روش جوشکاری به اندازه گیری این ناحیه مربوط می شود. ارتفاع گرده جوش با افزایش جریان جوشکاری و کاهش سرعت حرکت جوشکاری افزایش می یابد و تاثیر ولتاژ برگرده جوش ناچیز است.
رقت: نسبت فلز پایه به رسوب فلز جوش عامل مهم در کنترل خواص مکانیکی فلز جوش است. رقت فلز جوش از فلز پایه را می توان از روی نسبت حجم گرده (سطح مقطع عرضی درطول گرده) بر فلز پایه حساب کرد. رقت فلز جوش از فلز پایه با افزایش نسبت جریان به سرعت جوشکاری افزایش می یابد. با افزایش ولتاژ نرخ ذوب الکترود اندکی کمتر شده و لذا باعث افزایش رقت می شود.
بازیسیته پودر جوش :اندیس بازی پودر جوش (BI) معیار دیگری برای طبقه بندی پودرهای جوش است که مقدار اسیدی بودن روش تولید فلاکس را و همچنین فعال ، خنثی یا آلیاژی بودن فلاکس را مشخص می کند. اندیس بازی نسبت مجموع اکسیدهای فلزی با پیوند سخت به مجموع اکسیدهای فلزی با پیوند سست است. اندیس بازی برآوردی از مقدار اکسیژن فلز جوش است و لذا می تواند برای بیان خواص فلز جوش بکار رود. پودرهای جوش با بازیسیته بیشتر تمایل به داشتن اکسیژن کمتر و استحکام بالاتر در فلز جوش دارند. در حالی که پودرهای جوش اسیدی، جوشی با اکسیژن بیشتر ، ریز ساختار درشت تر و با مقاومت کمتر در مقابل تورق تولید می کنند.پودرهای جوشی با اندیس بازی بیشتر از ۵/۱ پودر جوش بازی و با اندیس بازی کمتر از یک ، پودر جوش اسیدی شناخته می شوند. پودرهای جوش اسیدی معمولا برای جوش های تک پاس مناسبند و رفتار جوش مناسب و در گرده جوش خاصیت ترکنندگی خوب دارند.علاوه برآن پودرهای جوش اسیدی در مقایسه با پودرهای جوش بازی مقاومت بیشتری در برابر ایجاد تخلخل ناشی از آلودگی های چون روغن ، زنگ و پوسته های نوردی در ورق دارند.پودرهای جوش بازی در مقایسه با پودرهای جوش اسیدی مقاومت به ضربه بهتری نشان می دهند. این مزیت در جوش چند پاس به وضوح مشهود است. پودرهای جوش با بازیسیته زیاد در جوش های بزرگ با چند پاس خواص ضربه خیلی خوب و در جوش تک پاس خواص ضعیف تری را در مقایسه با پودرهای جوش اسیدی نشان می دهند. لذا مصرف پودرهای جوش بازی باید به جوش های بزرگ چند پاس که در آن استحکام ضربه خوب برای فلز جوش نیاز باشد محدود شود.

منابع عیوب در جوش زیر پودری
جوش زیرپودری فرایندی با گرمای ورودی بالاست و در زیر لایه محافظ فلاکس انجام می شود و لذا امکان بروز عیوب جوش در این روش بسیار کمتر از سایر روش هاست. عیوبی که بعضا در جوش زیرپودری رخ می دهند عبارتند از:

  • ذوب ناقص
  • سرباره باقیمانده درون جوش
  • ترک انقباضی
  • ترک هیدروژنی
  • تخلخل

ذوب ناقص و سرباره باقیمانده درون جوش : ذوب ناقص و سرباره باقیمانده درون جوش اغلب ناشی از قرار گرفتن صحیح گرده جوش بر روی درز جوش و یا از فرایند ناشی می شود. انحراف گرده جوش از محل خود باعث ایجاد چرخش و تلاطم فلز مذاب و اکسیژن تکه هایی از سرباره به درون فلز جوش شود. و اگر هم که گرده جوش دور از لب های اتصال باشند باعث عدم نفوذ کافی جوش به فلز پایه شود. گرده جوش تاجی شکل که براثر پایین بودن ولتاژ ایجاد می شود نیز احتمال بروز نفوذ ناقص و محبوس شدن سرباره را بخاطر مختل شدن حرکت یکنواخت مذاب تشدید می کند.
ترک انقباضی :ترک انقباضی در وسط طول گرده جوش زیر پودری هنگامی رخ می دهد که شکل گرده جوش و یا طرح اتصال مناسب نباشد و یا مواد جوش غلط انتخاب شده باشند. متمایل به ترک انقباضی در جوش با گرده جوش محدب و به شکل گرده ماهی هنگامی که نسبت پهنا به ارتفاع آن بیشتر از یک باشد کمتر است. هنگامی که عمق نفوذ جوش زیاد باشد تنش های انقباضی باعث ترک طولی در وسط جوش می شود و خطر این ترک می تواند براثر طرح اتصال نامناسب تشدید شود. مواد مستحکم تر بدلیل تنش بیشتر در جوش تمایل بیشتری به ایجاد ترک دارند. لذا هنگام استفاده از این مواد باید در انتخاب مواد جوش، آماده سازی طرح اتصال، دمای پیش گرمایش و دمای بین پاس ها کاملا دقت شود.
ترک هیدروژنی :ترک هیدروژنی یک فرایند کند است و برخلاف ترک انقباضی که بلافاصله پس از جوش ظاهر می شود ایجاد آن تا روزها پس از جوش نیز می تواند ادامه یابد. برای کاهش خطر ترک هیدروژنی باید همه منابع هیدروژن مانند آب ، روغن و آلودگی های موجود در فلاکس الکترود و سطوح اتصال حذف شوند و ورق فلاکس و الکترود کاملا تمیز و خشک باشند. فلاکس و الکترود را باید در محل های خشک و مقاوم به رطوبت نگهداری کرد و چنانچه در معرض رطوبت قرار گرفت باید طبق دستور سازنده مجددا خشک شوند. انتخاب مواد جوش مناسب برای فولادهای پراستحکام مقاومت جوش را در برابر ترک هیدروژنی افزایش می دهد. مواد جوش ویژه مقاوم در برابر ترک هیدروژنی ساخته می شوند که قابلیت نفوذ هیدروژن در جوش را کاهش می دهند. پیش گرمایش قطعه کار خطر ترک هیدروژنی را باز هم کاهش می دهد. قطعات ضخیم گرمای پیش گرم را تا ساعت ها پس از جوشکاری در قطعه نگه می دارند. لذا خطر ترک هیدروژنی در این قطعات کمتر است. دمای پیش گرم مناسب بیشتر از  ۱۰۰ oC است زیرا در این دما هیدروژن درون فولاد کاملا متحرک است و به خروج بیشترین مقدار هیدروژن از فولاد کمک می کند.
تخلخل :درجوش زیر پودری سرباره حفاظت خوبی از مذاب انجام می دهد و لذا تخلخل ناشی از ورود گاز به مذاب در جوش زیر پودری معمول نیست. در جوش زیرپودری منشاء تخلخل ممکن است از درون مذاب و یا فشردگی هایی در سطح گرده جوش باشد. برای کاهش تخلخل در جوش زیر پودری باید پوشش فلاکس کافی باشد و ورق، الکترود و فلاکس از همه آلودگی ها از جمله رطوبت روغن و غیره پاک باشند. در سرعت های بیش از حد جوش کاری نیز حباب های گاز فرصت خارج شدن از مذاب را پیدا نمی کنند که در صورت وجود حباب ها درست در زیر سرباره برای کنترل آن باید سرعت پیشروی جوشکاری را اندکی کاهش داد.

طراحی و اجرای اتصالات جوشی بر آسیب پذیری لرزه ای سازه های فولادی

۲۴ اردیبهشت ۱۳۹۱

طراحی و اجرای اتصالات جوشی بر آسیب پذیری لرزه ای سازه های فولادی

چکیده
با گذشت حدود ۵۰ سال از کاربرد اتصالات جوشی در صنعت ساختمان در ایران هنوز نقایص زیادی در اجرای ساختمانهای فولادی جدید مشاهده می شود. در یک بررسی اولیه عوامل زیر را می توان به عنوان دلایل اصلی نقایص ذکر کرد:

عدم طرح دقیق اتصالات جوشی با توجه به عملکرد مورد نظر آنها-۱
-عدم انطباق اجرای معمول ساختمان با آیین نامه ها و دستورالعمل ها-۲
کیفیت پایین جوش به علت عدم وجود آموزش کلاسیک کافی در این زمینه برای مهندسان و جوش کاران-۳
نبود نظارت اصولی و دقیق بر اجرای جوش کاری در ساختمانهای شهری در کشور.-۴

در این مقاله بعد از مرور خرابی های سازه های فولادی در زلزله های گذشته ایران و جهان سعی گردیده تا طراحی و اجرای معمول و سنتی سازه های فولادی جوش شده در کشور با حالت قابل قبول آن مقایسه گردد. برای این منظور از آیین نامه های معمول طراحی سازه های فولادی ایران و آیین نامه های طراحی کشورهای صنعتی زلزله خیز استفاده شده تا مشخص شود که چه مواردی از اجرا یا آیین نامه ها و دستورالعملهای اجرایی همخوانی ندارد. علاوه بر آن مطالعه ای بر روی نقاط ضعیفی که ناشی از اجرای جوش می باشد انجام گرفته و در پایان پیشنهاداتی برای بهبود وضع موجود و کاهش خطرات ناشی از زلزله ها در این نوع سازه ها ارایه گردیده است.

مقدمه
سازه فولادی از مجموعه ای از اعضای باربر ساخته شده از نیمرخهای فولادی یا ورق می باشد که به کمک اتصالات به یکدیگر متصل می گردند.با توجه به روشهای تکامل یافته ای که برای تولید نیم رخ های فولادی به کار گرفته می شود این مقاطع غالبا رفتار در حد قابل انتظاری از خود نشان می دهند. مساله بسیار مهم رفتار اتصالاتی است که الف) برای ساخت اعضای مرکب از نیم رخ و ورق برای یکپارچه نمودن اعضا(شامل تیر و ستون و مهار بندها)در محل گره ها مورد استفاده قرار می گیرد.وسایلی که برای ساخت اعضا و اتصال آنها به یکدیگر به کار می رود شامل پیچ و پرچ و جوش است.در این میان استفاده از جوش در ساختمان سازی متعارف در ایران بسیار رایج است.تا زمان وقوع زلزله نورث ریچ(۱۹۹۴)تصور بر این بود که در صورت رعایت اصول فنی در طرح و اجرای سازه های فولادی جوشی این سازه هادر زلزله عملکرد قابل قبولی از خود نشان می دهند.اما وقوع این زلزله این فرض را زیر سوال برد.در این زلزله مشاهده شد که در بسیاری از اتصالات , در محل درز جوش اتصال , فلز مادر(Base metal) دچار ترک یا بعضا شکست شده است.این مساله باعث شد تا تحقیقات گسترده ای در مورد علت این پدیده صورت گیرد که این تحقیقات تا به امروز ادامه دارد.از طرف دیگر مشاهده و تحقیق درباره وضعیت ساخت و ساز ساختمانهای فولادی نشان می دهد که اتصالات جوشی متداول در ایران از کیفیت مناسبی برخوردار نیستند و با وجود سابقه نسبتا طولانی در استفاده از جو شکاری در صنعت ساختمان هنوز نقایص زیادی در این زمینه مشاهده می شود.

عملکرد لرزه ای ساختمانهای فولادی
براساس تجربه های حاصل از زلزله های گذشته و مطالعات انجام گرفته سازه هایی در برابر زلزله دارای عملکرد بهتری هستند که بتوانند ضمن حفظ پایداری و انسجام کلی خود انرژی ناشی از زلزله را تا حد امکان جذب و مستهلک نمایند.

با توجهبه منحنی نیرو-تغییر مکان سازه ها و توجه به این مطلب که سطح بین منحنی نیرو-تغییر مکان و محور تغیی رمکان نشان دهنده میزان انرژی جذب شده توسط سازه است.هر چه سازه شکل پذیرتر باشد انرژی بیشتری را هنگام زلزله جذب کرده و رفتار مطلوب تری دارد.فولاد نرمه به علت طبیعت شکل پذیر از این نظر ماده مناسبی می باشد و می تواند میزان زیادی انرژی جذب کند.اما تجربه نشان داده است که در سازه های فولادی در صورت عدم استفاده از اتصالات مناسب عملکرد مناسب لرزه ای آنها مناسب و قابل قبول نخواهد بود و در اثر زلزله دچار شکست سازه ای و یا انهدام خواهد شد.در زلزله منجیل (۱۳۶۹) مشاهده شد که تعدادی از ساختمانهای فولادی دچار تخریب کامل شدند. رفتار این سازه ها در این زلزله ثابت کرد که در بسیاری از موارد سازه های موجود دارای سیستم مقاوم زلزله مناسبی نیستند.استفاده از تیرهای خورجینی(تیرهای سرتاسری در دو طرف ستون با اتصال نبشی) و عدم شناخت سیستم حاصل و مدل صحیح برای این اتصالات باعث شده این سیستم از نظر مهندسی زلزله بسیار آسیب پذیر تلقی گردد.درس حاصل از این زلزله کیفیت پایین ساخت و ساز شهری بودکه در سالهای اخیر تلاشهایی برای اصلاح آن به عمل آمده است.در زلزله نورث ریچ آمریکا مشاهده شد که در بسیاری ازساختمانهای فولادی اتصال تیرها و ستونها دچار ترک و یا بعضا شکست شد.بیشتر این ترکها و شکستها در بال ستون اتفاق افتاده است.

صنعت جوشکاری ساختمان در ایران
با گذشت ۵۰ سال از استفاده از جوش در ساختمان دهه اخیر(۸۰-۱۳۷۰)از نظر تعداد ساختمانهایی که با سازه های فولادی طراحی و اجرا شده اند کاملا استثنایی به شمار می آید.در نیمه دوم این دهه دهها هزار سازه فولادی در تهران و شهرهای بزرگ ایرن به ناگهان سر از زمین برآورد.گسیل سرمایه ها به سوی ساخت و ساز شهری و تبدیل ساخت سرپناه به ماشین سرمایه گذاری جهت سودهای کلان باعث گردید تا رعایت اصول فنی و ایمن سازی ساختمانها در برابر زلزله در برابر منفعت طلبی صاحبکاران عملا مورد توجه قرار نگیرد.از طرف حجم عظیم ساخت و ساز نیروز انسانی زیادی اعم از مهندس و تکنسین و جوشکار احتیاج داشت که باعث ورود افراد غیرمتخصص به این جرگه گردید.تمامی این مسایل دست به دست هم داد تا طرح و اجرای ساختمانهای فولادی آنچنان که باید از کیفیت مطلوبی برخوردار نباشد.تخریب کلی ساختمانهای فولادی در زلزله منجیل موید پایین بودن کیفیت ساختمانهای فولادی کشور می باشد. از میان تمامی عوامل دخیل در طرح و ساخت سازه های فولادی اتصالهای جوشی از نارساییهای بیشتری برخوردارند. علل اصلی پایین بودن کیفیت جوش درساخت و سازهای شهری را می توان به صورت زیر بیان نمود :

۱-عدم انطباق اجرای معمول سازه های فولادی با آیین نامه ها و دستورالعملها
کیفیت پایین جوش به علت عدم آموزش کلاسیک کافی در این زمینه برای جوشکاران و مهندسان-۲
نبود نظارت اصولی و دقیق بر اجرای جوشکاری در ساختمانهای شهری در کشور-۳
عدم طرح دقیق اتصال جوشی با توجه به عملکرد مورد نظرآنها-۴

 

(PQR ( Procedure Qualification Record

۱۶ تیر ۱۳۹۰

(PQR ( Procedure Qualification Record

ساخت و نصب سازه های جوشکاری مستلزم این است که نشان دهیم کیفیت مواد اولیه، روش جوشکاری و فلز حاصل از جوش، مطابق با خواسته های استاندارد می باشد.

این کار به کمک یکسری آزمایشات مخرب و غیرمخرب تحت عنوان گزارش کیفیت روش جوشکاری PQR انجام می شود. (Procedure Qualification Report)

هدف از انجام آزمایشات تعیین کیفیت روش جوشکاری آن است که نشان دهیم، روش جوشکاری تدوین شده (WPS) با اتصالــی سالـم و بـا خواص مکانیکی مطلوب و قابل پذیرش در محدوده استاندارد مربوطه، بوجود می آورد. نتیجــه آزمــایشات در فرم خاصی ثبت شده که به آن گــزارش کیفیت روش جــوشکاری Procedure Qualification Record (PQR) می گویند.

مراحل تهیه PQR

برای تهیه یک PQR چهار مرحله زیر طی می شود:

مرحله اول – آماده سازی و جوشکاری نمونه های مناسب

مرحله دوم – آزمایش نمونه های تهیه شده

مرحله سوم – ارزیابی نتایج و نتیجه گیری راجع به آماده سازی، جوشکاری و آزمایشات

مرحله چهارم – ثبت و تأئید نتایج (در صورت قابل قبول بودن آنها)

مرحله اول :آماده سازی و جوشکاری نمونه های مناسب

معمولا” نمونه ها به نحوی مونتاژ و ساخته می شوند که درز اتصال در وسط نمونه قرار بگیرد. اندازه، نوع و ضخامت نمونه باید متناسب با نوع و ضخامت موادی که در تولید جوشکاری می شوند و نیز تعداد، نوع و اندازه نمونه های آزمایشی لازم برای آزمایشات باشد. مواد ، نحوه و جزئیات جوشکاری نمونه ها باید مطابق با WPS مربوطه باشد، به عبارت دیگر متغیرهای ضروری باید یکسان باشد.

ابعاد و اندازه نمونه ها باید حداقل با مقادیر ذکر شده در استاندارد مطابقت داشته باشد. مطابق با همین استاندارد اندازه و محل نمونه های آزمایش که از نمونه های جوشکاری شده بدست می آیند ، مشخص شده است.

مرحله دوم : آزمایش نمونه های تهیه شده

آزمایشات مشخصــی بــر روی نمونه های جوشکاری شده باید انجام شود. نوع و تعداد نمونه هائی که برای تست های مخرب لازم است، بستگی به استاندارد مورد استفاده و مشخصات کاربردی ویژه سازه دارد. اغلب تست های غیرمخرب نیز انجام می شوند.

آزمایشهای مورد نیاز برای جوشهای شیاری عبارتند از:

۱)    بازرسی چشمی (Visual testing)

۲)    آزمایش رادیوگرافی یا اولتراسونیک (Non destructive test: RT, UT)

۳)    آزمایش خمش – ریشه برای سلامت جوش (Root-Bend test)

۴)    آزمایش خمش – گرده برای سلامت جوش (Face- Bend test)

۵)      آزمایش کشش از فلز جوش برای خصوصیات مکانیکی فرآیندهای (All – Weld Metal tension) EGW, ESW

۶)    آزمایش ضربه برای تعیین چقرمگی و انرژی ضربه (Impact test)

۷)    آزمایش ماکرواچ برای سلامت و نفوذ موثر ساق جوش (Macroetch test)

۸)    آزمایش کشش با مقطع کاهش یافته برای اندازه گیری استحکام کششی (Tensile test)

همچنین برای جوشهای گلوئی (Fillet) آزمایشهای زیر مورد نیاز است:

۱)    بازرسی چشمی (Visual Inspection)

۲)    آزمایش ماکرواچ برای سلامت و ذوب کافی جوش (Macroetch test)

۳)    آزمایش خمش- جانبی برای سلامت جوش (Side-Bend test)

۴)    آزمایش کششی از فلز جوش برای خصوصیات مکانیکی (All-Weld Metal tension)

تعداد ، نوع و روش آماده سازی نمونه های آزمایش جوش در استانداردهای گوناگون تفاوتهای مختصری با هم دارد که برخی از آنها در مورد جوش سر به سر ورق فولاد کربنی با ضخامت کمتر از ۱۰ میلیمتر بصورت زیر است :

استاندارد ASME, Sec IX : دو عدد آزمایش کشش عرضی ، دو عدد خمش گرده (۱۸۰°) ، دو عدد خمش ریشه (۱۸۰°)

استاندارد AWS, D1.1 : دو عدد آزمایش کشش عرضی ، دو عدد خمش گرده (۱۸۰°) ، دو عدد خمش ریشه (۱۸۰°) ، آزمایش غیرمخرب

استاندارد BS4870 : یک آزمایش کشش عرضی، یک خمش گرده (۱۸۰°) ، یک خمش ریشه)( ۱۸۰° ، سختی سنجی مقطع، مطالعه مقطع عرضی ، آزمایش غیرمخرب)

مرحله دوم : آزمایش نمونه های تهیه شده

*) آزمایش کششی با مقاطع کاهش یافته

قبل از انجام آزمایش تمام اندازه های نمونه کنترل می شوند. سپس نمونه در فک های دستگاه قرار گرفته و بار اعمال می شود. آزمایش تاحد پارگی نمونه ادامه می یابد. اگر حداکثر بار وارده را بر مساحت مسطح مقطع نمونه تقسیم کنیم. استحکام کششی بدست خواهد آمد. همچنین از روی تفاوت طول نمونه ، قبل و بعد از آزمایش (اندازه ثانویه با کنار هم قراردادن نمونه های شکسته اندازه گیری می شود) امکان محاسبه درصد ازدیاد طول وجود دارد.

قبل از انجام آزمایش تمام اندازه های نمونه کنترل می شوند. سپس نمونه در فک های دستگاه قرار گرفته و بار اعمال می شود. آزمایش تا حد پارگی نمونه ادامه می یابد.

*) آزمایش ماکرواچ

ابتدا مقطعی از نمونه بریده شده و توسط سنگ صاف می شود. سپس با سنباده زنی متوای با کاغذ سنباده های مختلف – از زبر به نرم – سطح نمونه صیقلی می شود. برای اچ کردن محلولهای مختلفی وجود دارد که در استانداردها ذکر شده است.

*) آزمایش خمش

نمونه ها در سه شکل ریشه، سطحی و جانبی تهیه می شوند. نمونه ها مطابق استاندارد در نگهدارنده قرار گرفته و بوسیله یک سنبه سرگرد ، خمیده می شوند.

نمونه باید بر روی قالب قرار گرفته و سپس سنبه سرگرد پائین آمده و موجب خمیدگی نمونه شود. به هنگام قرار دادن نمونه ها باید به نکات زیر توجه کرد:

الف ) نمونه های خمشی جانبی از پهلوی جوش بر روی قسمت خالی قالب قرار می گیرند.

ب  ) نمونه های خمشی ریشه و نمونه های تعیین سلامت جوش گلوئی از قسمت زیر جوش روی قالب قرار می گیرند.

ج   ) نمونه های خمشی سطحی از قسمت روی جوش بر روی قسمت خالی قالب قرار می گیرند.

نمونه ها پس از اعمال فشار باید کاملا” به شکل U در آمده باشند. ضمن اینکه فلز جوش و ناحیه متآثر از حرارت باید کاملا” در مرکز قالب قرار گرفته و پس از انجام آزمایش خمش میان قسمت خمیده قرار بگیرند.

آزمایش کشش نمونه فلز جوش

آزمایش کشش بر اساس ASTM A370 انجام می شود.

آزمایشات غیرمخرب

۱-   بازرسی چشمی

۲-   آزمایش ذرات مغناطیسی برای تشخیص ترک

۳-   آزمایش مایعات نافذ برای تشخیص ترکهای سطحی

۴-   آزمایش رادیوگرافی

۵-   اولتراسونیک

مرحله سوم : ارزیابی نتایج

نتایج قابل قبول آزمایشات

نتایج حاصل از آزمایشات با معیار پذیرش مربوطه در استاندارد مقایسه شده و در صورت تأئید و قابل قبول بودن ، نتایج قابل درج در PQR می باشند.

مرحله چهارم : ثبت و تأئید نتایج

پس از تعیین نتایج آزمایشات، مشخصات فرآیند تهیه نمونه و نتایج آزمایشهای تعیین کیفیت باید در فرم خاصی با عنوان گزارش کیفیت روش جوشکاری Procedure Qualification Record (PQR) ثبت شده و پس از مطالعه نتایج آزمایشات، مورد تأئید قرار گیرد.

فرم PQR عموما” دو صحفه ای است . در صفحه اول PQR، اطلاعات و پارامترهای لازم برای انجام فرآیند جوشکاری ذکر می شود که نحوه تنظیم آن همانند نحوه تنظیم فرم WPS است . به عبارت دیگر در صفحه اول اطلاعاتی نظیر: روش جوشکاری ، طرح اتصال ، فلز پایه پرکننده ، وضعیت جوشکاری ، پیشگرم و … ذکر می گردد.

در صفحه دوم فرم PQR نتایج آزمایشات کشش، خمش ، ضربه و در صورت نیاز دیگر آزمایشات نظیر سختی سنجی ، آنالیز شیمیائی و … درج و تأئید می گردد. ضمیمه شماره (۳)

ذکر نام جوشکار نمونه آزمایش در این قسمت الزامیست . مواردی چون شماره پرسنلی و درجه کیفیت کار جوشکار نیز در PQR نوشته می شود. نام تنظیم کننده آزمایش و شماره گزاش آزمایشات نیز در PQR درج می گردد. تنظیم کننده PQR نهایتا” با ذکر تاریخ گزارش کیفیت روش جوشکاری را امضاء می کند.

نکات لازم در نوشتن PQR (در محدودیت متغیرها)

جهت کاهش هزینه و زمان ناشی از آزمایشات تعیین کیفیت لازمست تا محدوده ای برای متغیرهای PQR در نظر گرفته شود. بدیهی است تغییر هر یک از متغیرها در خارج از محدوده تعریف شده، منجر به نوشتن PQR , WPS جدید می شود.

بر اساس استاندارد هر تولید کننده موظف به ارائه WPS جهت مشخص کردن روش جوشکاری (WPS) است و هر WPS باید به کمک آزمایشهای کنترل کیفی (PQR)، تأئیدیه کیفیت دریافت کند. پس هر WPS به یک PQR نیاز دارد. اما با توجه به نکات کد امکان تنظیم یک PQR برای تضمین کیفیت چندین WPS وجود دارد. در جداول کد امکان تغییر (افزایش یا کاهش) هر یک از متغیرهای اساسی، تکمیلی و غیراساسی فرآیندهای مختلف جوشکاری مورد مقایسه قرار گرفته است.

انواع الکترود

۱۴ تیر ۱۳۹۰

انواع الکترود برای جوشکاری در تمام حالات مخصوصاً سربالا استاندارد آما ۱/۴۲۱ م ج رنگ شناسائی : انتها – سورمه ای سیر الکترود روتیلی روپوش متوسط برای فولادهای ساده در تمام حالات مخصوصاً جوش سربالا و بالاسر و حالات اجباری، دارای اکسید آهن. دارای گواهی از لویدز ژرمن جوش دادن با این الکترود بسیار آسان است و سرباره آن بخوبی پاک می شود – قوس آرام دارد – گرده جوش تمیز است و حالات مختلف را با شدت جریان ثابت بخوبی جوش می دهد. انواع الکترود برای جوشکاری در تمام حالات مخصوصاً سربالا استاندارد آما ۱/۴۲۱ م ج استانداردآمریکائی: AWS.E 6013 رنگ شناسائی : انتها – زرد الکترود با روپوش متوسط روتیلی برای جوشکاری فولادهای معمولی در ساختمان اسکلت های فلزی – خرپاها – پل سازی – در و پنجره سازی – ورق کاری و سایر کارهای آهنی – این الکترود را می توان برای جوشکاری درهمه حالات ( عمودی – افقی – و بالاسر ) استفاده نمود. محل جوش نرم است و بخوبی قابل براده برداری یا چکش کاری می باشد. دارای گواهی از لویدز ژرمن و دانشکده پلی تکنیک تهران و هنرستان صنعتی تهران. انواع الکترود مخصوص جوشکاری مخازن – ماشین سازی – پل سازی و کشتی سازی استاندارد آما ۴/۱ + ۵۰ ک ج استانداردآمریکایی: AWS.E 7018/8018 رنگ شناسائی : انتها – نقره ای الکترود قلیائی برای کارهائی که به جنس جوش فشار زیاد وارد می شود مانند مخازن دیگها – مصارف ماشین سازی – کشتی سازی – پل سازی و بناهای فولادی – قابل کار روی فولادهای ساختمانی ، ۳۳ St ، ۳۴ St ، ۴۲ St ، ۵۰ St ، ۵۲ St ، ۶۰ St ، ۷۰ St و فولادهای دانه ریز با مقاومتهای ۵۰ تا ۶۲ کیلوگرم مثل فولادهای ۵۰ Fb ، ۵۰ Hsb ، ۴ Mn 19 ، ۵ Mn 17، ۳۹ Bh ، ۱۵۴ Dillinal ، ۵۰ Aldur ، F 38 Sb ، ۶ Fk ، ۵۰ Hoag ، ۳۶ Union ، ۳۶ Bh ورقهای دیگ سازی HIII ، HII ، HI ، ورقهای لوله سازی ، ۴/۵۵ St ، ۵۵ St ، ۸/۴۵ St ،۵/۴۵ St ، ۴۵ St ، ۸/۳۵ St ، ۳۵ St ، ۴/۳۵ St ، ۳۵ St ، و فولادهای کشتی سازی A . B .C . D .E و فولادهای مقاوم در سرما N 35 TT St ، N 45 TT St ، N 45 TT St ، V 41 TT St ، N 41 TT St ، V 35 TT St و فولادهای مقاوم در کهنگی و سرما. دارای گواهی از خط آهن دولتی آلمان فدرال و لویدزژرمن برای فولادهای ، ۵۰ St ، ۶۰ St ، ۷۰ St آزمایش شده از طرف اتحادیه مراقبتهای فنی آلمان تا منهای ۸۰ درجه سانتیگراد. این الکترود با پاشیدن متوسط در همه حالات به آسانی جوش می خورد. فقط الکترودهای خشک مصرف شود. با قوس کوتاه جوشکاری شده و حتی المقدور کمتر نوسان دهند. سربار آن به آسانی پاک می شود. مخصوصاً ثبات فرم آن حتی در حرارتهای کم و تنشهای نامناسب جالب توجه است. الکترودهای مخصوص رنده های ماشین تراش و صفحه تراش یا فولادهای تنه بر عملیات حرارتی الف- تاباندن ۵ ساعت در ۸۲۰ درجه سانتیگراد ب- آب دادن : حرارت سردکردن ۱۲۸۰ تا ۱۳۲۰ درجه سانتیگراد وسیله سردکردن : روغن – حمام گرم – هوای خشک فشرده حرارت حمام کردن : ۵۰۰ تا ۵۵۰ درجه سانتیگراد حرارت رنگ گیری : ۵۶۰ تا ۵۸۰ درجه سانتیگراد نمونه مصرف رنده صفحه تراش طبق دین ۴۵۵۲ __ ساختمان یک رنده صفحه تراش نوبا :__ این فولاد بهتر از همه است زیرا دارای تمام خواص جوشکاری و آبدهی می باشد. حتی المقدور از مصرف فولادهائی که بیش از ۴۵/۰ % و کمتر از ۳۵/۰% کربن دارند اجتناب شود. طرز کار الف- گرم کردن سریع ۶۰۰ تا ۷۰۰ درجه سانتیگراد ب- جوش دادن د- سائیدن مقدماتی ( در صورت تاباندن جهت نرم شدن عملیات براده برداری هم ممکن است) هـ – آب دادن در حرارت ۱۲۸۰ درجه سانتیگراد ( در روغن ) و- رنگ گیری نیم ساعت در ۵۶۰ درجه سانتیگراد ز- به اندازه سائیدن برای محدود کردن جوش روکشی قطعاتی از مس یا فلزات سبک و همچنین قطعات گرافیت پهلوی آن قرار می دهند. این قطعات کار جوش را آسان کرده و سرعت کار را زیاد می نماید. قطعات فوق باید طوری باشند که جلوی جریان جوش را نگیرند.برای این منظور یا باید یخ خورده باشند ( ۴۵ درجه ) و یا بین قطعات و قطعه کار ۲ تا ۳ میلیمتر فاصله باشد. انتخاب قطر الکترود بسته به سطحی است که باید روکش شود. آما ۱۱۰۵ رنگ شناسائی : انتها – زرد با خال نقره ای استاندارد :آمریکائیE FE.5B مخصوص تهیه و اصلاح لبه های افزارها مثل رنده های ماشین تراش و صفحه تراش. آما ۱۱۰۵ می تواند در تهیه کارهای نو روی فولادهای ساده و در کارهای اصلاحی روی تمام افزارهای فولاد تندبر روکشی شود. این الکترود دارای قوس آرام است و آسان هدایت می شود جنس جوش متراکم و بدون خلل و فرج بوده سخت و پر مقاومت می باشد و عملیات حرارتی لازم ندارد ولی به هر صورت با آن عملیات سخت تر خواهد شد. جنس جوش در هر حال قابل براده برداری نیست و فقط ممکن است با سنگ سمباده سائیده شود. در جوش روکشی به روی فولاد کربن دار وقتی بهترین نتیجه حاصل می شود که به فلز مبنا حداقل حرارت لازم جهت چسبیدن جوش برسد. برای این منظور باید حتی المقدور با جریان کم جوشکاری کرد و الکترود را نوسان نداد. فلز مبنا باید قبلاً در حدود ۶۰۰ الی ۷۰۰ درجه سانتیگراد گرم شده باشد و هنگام جوش این حرارت حفظ شود از نظر ترکیبات خاصی که در روپوش وجود دارد با الکترود آسیب دیده نباید جوش داد. الکترودهای روکش سخت و مقاوم در برابر فرسودگی رنگ شناسائی : انتها – سبز با خال سفید الکترود روپوش کلفت اوستنیتی همراه با کرم – نیکل – و مانگانز برای جوشکاری اتصالات عالی و ترک نخور- فولادهای بد جوش یا فولاد ریختگی .جوش روکشی ریل های تراموای سوزن خط آهن – زنجیرهای حرکت تراکتورهای زنجیری و امثال آن – قشر لائی پر مقاومت در روکشهای سخت مخصوصاً قسمتهای فرسوده شونده در فولاد سخت کرم دار مخصوص فولادهای ساده و آلیاژدار با استحکام زیاد- فولادهای احیا شده فولادهای زنگ نزن کرم دار فولادهای مقاوم در پوسته شدن – فولادهای سخت منگنز و فولادهای معمولی. دارای گواهی از خط آهن آلمان فدرال برای روکشی و جوش دادن فولاد سخت منگنز آما ۱۰۹۰ با قوس آرام ذوب می شود در حال عادی پس از جوشکاری جنس جوش نرم و پر مقاومت است ومی تواند با عملیات سخت کننده سرد تا ۴۰۰ برینل سخت گردد. جنس جوش به مقدار زیادی زنگ نزن و مقاوم در الکتروشیمی است. تا ۸۰۰ درجه سانتیگراد سخت است و پوسته نمی کند. الکترودهای مقاوم در برابر حرارت برای ساختمان تاسیسات نفتی و شیمیائی آماجی ۱۲۴۸ ن رنگ شناسی : انتها – سفید با خال آبی الکترودی است با روپوش قلیائی و با ۵/۰% کرم و ۵/۰% مولیبدن مناسب برای کار به روی فولادهای مقاوم در برابر حرارتهای زیاد و عملیات پر فشار مانند ساختمانهای مراکز جدید تاسیسات نفتی و شیمیائی. دارای گواهی از کارخانه شل هندی. این الکترود جریان آرام و روان دارد سرباره آن آسان پاک می شود و در تمام وضعیت به آسانی کار می کند. درز آن تمیز و خوش منظره است. برای رسیدن به یک جوش بی نقص نباید الکترود را نوسان داد و همچنین باید حتی المقدور طول قوس را کوتاه نگهداشت. فقط باید الکترودهای خشک مصرف کرد. در صورت مرطوب شدن الکترودها باید آنها را دو ساعت در حرارت ۱۵۰ درجه سانتیگراد خشک کرد و سپس به مصرف رساند. پیش گرم کردن قطعه کار از ۲۰۰ تا ۳۰۰ درجه سانتیگراد و گرم کردن آن برای رفع تنش از ۷۲۰ تا ۷۵۰ درجه سانتیگراد توصیه می شود. رنگ شناسائی : انتها – سفید با خال سفید استاندارد : آلمانی KB^IS الکترود قلیائی با روپوش کلفت برای جوشکاری فولادهائی که حداکثر تا ۵۵۰ درجه سانتیگراد را به طور قائم تحمل می نمایند مانند دیگها- مخزن و لوله ها و فولادهای ریخته گری مخصوص جوشکاری روی فولادهای ۱۷Mn4,19Mn5,15Mo3,HIV و فولاد ریخته گری Gs22Mo4 و فولادهای دانه ریز با مقاومت ۵۰ تا ۶۰ کیلوگرم بر میلی متر مربع آزمایش شده از طرف اتحادیه مراقبتهای فنی آلمان- دفتر آمریکائی و لویدژرمن. این الکترود دارای قوس آرام و ثابت است. پاشیدن آن بسیار کم می باشد. سرباره در قطعات متوسط به آسانی پاک می شود. منظره گرده جوش تمیز است. اندازه های تا ۲۵/۳ میلیمتری آن مخصوص لایه ریز در حالات اجباری درست شده است. این الکترود به طریقه مخصوصی با دو روپوش تهیه گردیده و در تمام حالات به استثنای از بالا به پایین قابل جوشکاری است. (فقط الکترودهای خشک را مصرف نمائید.) الکترودهای مخصوص جوشکاری سربالا استاندارد آما ۱/۳۲۲ ن ج رنگ شناسائی : ندارد الکترودی است برای جوشکاری در تمام حالات مخصوصاً عمودی سربالا, دارای قابلیت پل زنی خوب, با این الکترود می توان ورقهای نازک را هم بخوبی ورقهای ضخیم جوش داد. درز جوش ریز فلس بوده و بسیار تمیز است. گرده جوش کمی برجسته و بدون اثر سوختگی است. برای جوشکاری تعمیراتی و جوشکاری نوسازی در اطاق کامیون- قطعات اتومبیل – مخازن و ساختمانهای فولادی و ورقهای نازک مناسب است. برای جوشکاری همیشه طول قوس کوتاه انتخاب کنید. در جوشکاری بالا سر قطر کوچکتری انتخاب نمائید. استاندارد آما ۱/۴۲۱ م.ج رنگ شناسائی انتها : زرد با خال قرمز استاندارد : آمریکائی E 6013 الکترود با روپوش متوسط تیتانی برای جوش اتصالی در ساختمانهای فولادی ماشین سازی- واگن سازی- دیگ و مخزن سازی – کشتی سازی – درزهای لب به لب و گلوئی روی فولادهای ساده st33 , st34 , st33 , st37 , st43 , st52 و فولادهای لوله سازی ۳۵ st , st35/4 , st35/8 , st45 , st45/4 , st45/8 , st55 , st55/4 و فولاد دیگ سازی HIII, HII, HI و فولاد کشتی سازی A, B,C و فولادهای طبق دین ۱۶۲۳ و فولاد رخته گری. دارای گواهی از خط آهن آلمان فدرال تا ۵۲ st – لویدز ژرمن – آزمایش ده از طرف اتحادیه مراقبتهای فنی آلمان. این الکترود به آسانی روشن می شود.پاشیدن کم دارد- در همه حالات جوش می دهد و سرباره آن به آسانی جدا می گردد.

برخی از انواع عیوب جوش وعلت آنها

۱۴ تیر ۱۳۹۰

مقدمه

چون مواد و فلزات تشکیل‌ دهنده و جوش‌ دهنده و گیرنده از لحاظ متالوژیکی بایستی دارای خصوصیات مناسب باشند، بنابراین جوشکاری از لحاظ متالوژیکی بایستی مورد توجه قرار گیرد که آیا قابلیت متالوژی و فیزیکی جوشکاری دو قطعه مشخص است؟ پس از قابلیت متالوژی ، آیا قطعه‌ای را که ایجاد می‌کنیم، از لحاظ مکانیکی قابل کاربرد و سالم است؟ آیا می‌توانیم امکانات و وسائل برای نیازها و شرایط مخصوص این جوشکاری ، مثلاً گاز و دستگاه را ایجاد نمائیم و بر فرض ، ایجاد نیرو در درجه حرارت بالا یا ضربه زدن در درجه حرارت پایین ممکن باشد؟ زیرا استانداردهای مکانیکی و مهندسی و صنعتی جوشکاری باید در تمام این موارد رعایت شود تا جوش بدون شکستگی و تخلخل و یا نفوذ سرباره و غیره انجام گیرد.

تکرار می‌شود در جوشکاری تخصصی و اصولاً تمام انواع جوش ، قابلیت جوش خوردن فلزات را باید دقیقاً دانست. در مورد مواد واسطه و الکترود و پودر جوش ، باید دقت کافی نمود. محیط لازم قبل و در حین جوشکاری و پس از جوشکاری را مثلاً در مورد چدن ، باید بوجود آورد. گازهای دستگاههای مناسب و انتخاب فلزات مناسب از لحاظ ذوب در کوره ذوب آهن و بعد در حین جوشکاری از لحاظ جلوگیری از صدمه گاز – آتش و مشعل و برق و هوای محیط و وضعیت جسمانی و زندگی جوشکار ، خود نکات اساسی دیگر هستند که مشکلات جوشکاری می‌باشند.

روی هم افتادگی (انباشتگی جوش در کناره‌ها) overlap or over – roll

نقصی در کنار یا ریشه جوش که به علت جاری شدن فلز بر ری سطح فلز پایه ایجاد می شود بدون اینکه ذوب و جوش خوردن با آن ایجاد شود.
علت

۱٫       سرطان حرکت کمتر از حالت نرمال یا طبیعی

۲٫       زاویه نادرست الکترود

۳٫       استفاده از الکترود با قطر بالا

۴٫       آمپراژ خیلی کم
نتیجه

عوامل فوق کاری مانند بریدگی کناره دارد و یک منطقه تمرکز تنش از فلز جوش ترکیب نشده ایجاد می‌کند.
سوختگی یا بریدگی کناره جوش Underecut

شیاری در کنار یا لبه جوش که بر سطح جوش و یا بر فلز جوشی که قبلا را سبب شده است قرار دارد.
علت

۱٫       آمپر زیاد

۲٫       طول قوس زیاد

۳٫       حرکت موجی زیاد الکترود

۴٫       سرعت بسیار زیاد حرکت جوشکاری

۵٫       زاویه الکترود خیلی به سطح اتصال متمایل بوده است.

۶٫       سرباره با ویسکوزیته زیاد
نتیجه

عوامل فوق موجب یک منطقه تمرکز و یک منطقه مستعد برای ایجاد ترک خستگی می‌شود.
آخالهای سرباره Slag inclusion

به هر ماده غیر فلزی که در یک اتصال جوش بوجود می‌آید آخالهای سرباره می‌گویند؛ این آخالها می‌توانند در رسوب جوش نقاط ضعیفی ایجاد کنند.
علت

۱٫       پاک نشدن مناسب سرباره از پاسهای قبلی

۲٫       آمپراژ ناکافی

۳٫       زاویه یا اندازه الکترود نادرست

۴٫       آماده سازی غلط
نتیجه

آخالهای سرباره استحکام سطح مقطع جوش را کاهش می‌دهند و یک منطقه مستعد ترک ایجاد می‌کنند.
ذوب ناقص L.O.F) Lack of fusion )

عدم اتصال بین فلز جوش و فلز پایه یا بین پاسهای جوش
علت

۱٫       استفاده از الکترودهای کوچک برای فولاد ضخیم و سرد

۲٫       آمپراژ ناکافی

۳٫       زاویه الکترود نامناسب

۴٫       رعت حرکت بسیار زیاد

۵٫       سطح کثیف (پوسته نورد ، لکه ، روغن و …)
نتیجه

اتصال جوش را ضعیف می‌ماند و به یک منطقه مستعد ایجاد خستگی تبدیل می‌شود.
تخلخل Porosity

تخلخل سوارخ یا حفره‌ای‌ است که به صورت داخلی یا خارجی در جوش دیده می‌شود. تخلخل می‌تواند از الکترود مرطوب ، الکترود روکش شکسته یا از ناخالصی روی فلز پایه ایجاد شود.
همچنین به نامهای (مک لوله‌ای) ، (مک سطحی) و (سوراخهای کرمی) نیز شناخته می‌شود.

سایر علتها

۱٫       سطح فلز پایه آلوده مثل آلودگیهای روغن ، غبار ، لکه یا زنگار

۲٫       مرطوب بودن روکش الکترود

۳٫       محافظت گازی ناکافی قوس

۴٫       فلزات پایه با مقادیر بالای گوگرد و فسفر
نتیجه

به شدت استحکام اتصال جوش شده را کاهش می‌دهد. تخلخل سطحی به اتمسفر خورنده اجازه می‌دهد که فلز جوش را مورد حمله قرار دهد و موجب نقص در آن شود.
همراستا نبودن اتصال جوش Join misagnment

این مشکل معمولا همراستا و همسطح نبودن قطعاتی که به هم جوش می‌شوند نامیده می‌شوند. عدم همراستایی یک مشکل معمول در آماده سازی روشهای لب به لب است و هنگامی ایجاد می‌شود که صفحات ریشه و صفحات اتصال از فلز پایه در محل درست خود برای جوشکاری قرار نگرفته‌اند.
علت

۱٫       مونتاژ نادرست قطعاتی که باید جوش شوند.

۲٫       خال جوشهای ناکافی که می‌شکند یا بست زدن ناکافی که موجب حرکت می‌شود.
نتیجه

همراستا بودن جدی است، زیرا نقص در ذوب لبه ریشه موجب ایجاد مناطق تمرکز تنش می‌شود در سرویس دهی موجب شکست خستگی زود رس اتصال می‌شود.
نفوذ ناقص L.O.P) Lack of pentertation)

عدم نفوذ کامل فلز جوش به ریشه اتصال
علت

۱٫       آمپر بسیار پائین

۲٫       فاصله ریشه ناکافی

۳٫       استفاده از الکترود با قطر بالا

۴٫       سرعت حرکت زیاد
نتیجه

سرعت جوش را ضعیف می‌کند و به مستعد ایجاد خستگی تبدیل می‌شود.
ترک جوش Weld cracking

انواع مختلفی از عدم اتصال ممکن است در جوش یا مناطقی که تحت تاثیر حرارت قرار می‌گیرند، رخ دهد. جوشها ممکن است دارای تخلخل ، آخالهای سرباره یا انواع ترکها باشند. تخلخل و آخالهای سرباره شاید در جوش تا حدی قابل قبول باشد اما ترکها در جوش هرگز قابل قبول نمی‌باشند. وجود ترک در جوش یا در مجاورت جوش نشانگر این مسئله می‌باشد که حتما مشکلی در حین کار وجود داشته است. بررسی دقیق ترکها ، تعیین علت اجاد آنها و نیز راههای جلوگیری از آنها را برای ما امکان پذیر می‌سازد. در ابتدا ما باید به این مسئله توجه داشته باشیم که بین ترک و شکست تفاوت قائل شویم. منظور ما از ترک ، پدیده‌ای است که در اثر عواملی مانند انجماد ، سرد شدن و تنشهای داخلی که به علت انقباض جوش می‌باشد ایجاد می‌گردد. ترکهای گرم ، ترکهایی می‌باشند که در دماهای بالا رخ می‌دهند و معمولا به انجماد ربط دارند.

ترکهای سرد ترکهایی هستند که بعد از اینکه جوش به دمای اطاق رسید، رخ دهد و ممکن است حتی به HAZ رابط داشته باشد. بیشتر ترکها در اثر تنشهای فیزیکی انقباض که معمولا با کشیدن یا تغییر شکل جسم همراهی باشد در هنگام سرد شدن جوش رخ می‌دهد، ایجاد می‌شوند، اگر انقباض محدود شود، این تنشهای فیزیکی کرنشی ، تنش داخلی پسماند را بوجود می‌آورند که این تنهای پسماند منجر به ایجاد ترک می‌شوند. در واقع دو نیروی مخالف وجود دارد:

۱٫       تنشی که بوسیله انقباض ایجاد می‌شود.

۲٫       استحکام و سختی فلز پایه

تنشهای ناشی از انقباض با افزایش حجم فلزی که تحت انقباض قرار گرفته است، افزایش می‌یابد. جوشهایی در ابعاد بزرگ و فرآیندهایی با نفوذ زیاد کرنشهای انقباضی را افزایش می‌دهند. تنشهایی که در اثر کرنشهای انقباضی ایجاد می‌شود با افزایش استحکام فلز پر کننده و فلز پایه افزایش می‌یابد. همچنین وقتی که استحکام تسلیم افزایش باید تنش پسماند نیز افزایش می یابد.

۱٫       ضرورت جوشکاری

۲٫       پیشگرم

۳٫       دمای بین پالسی

۴٫       عملیات حرارتی پس از جوش

۵٫       طراحی اتصال

۶٫       روشهای جوشکاری

۷٫       مواد پر کننده
ترک به صورت خط مرکزی

ترک به صورت خط مرکزی در مرکز یک پاس جوش معین قرار دارد. اگر انتهایی کپاس جوش داشته باشیم و اینپالیدرمرکز اتصال باشد آنگاه این ترکمرکزی در مرکزاتصال نیز رار خواهد داشت. در مورد پاس های چند تای که چندین پاس در هر لایه وجود دارد ترک مرکزی از نظر هندسیب ممکن است در مرکز اتصال قرار نداشته باشد. ار چه اغلب دیده می شود که در مرکزاتصال قرار دارد. علت ترک مرکزی یکی از سه پدیده زیر می باشد:

۱٫       ترکی که ناشی از جدایش و تفکیک باشد.

۲٫       ترکی که مربوط به شکل گرده جوش می‌باشد.

۳٫       ترکی که مربوط به تغییرات سطحی می‌باشد.

متاسفانه تمام سه پدیده فوق خودشان را در قالب یک نوع آشکار می‌کنند و تشخیص دادن ترک مشکل می‌باشد. علاوه بر این ، تجربه‌ها نشان داده‌اند که اغلب ۲ یا حتی ۳ پدیده فوق با یکدیگر برهمکنش داده و در ایجاد ترک موثرند. در واقع درک مکانیسم اصلی هر یک از انواع ترکهای مرکزی به ما کمک می‌کنند تا به دنبال راه حلی برای از بین بردن ترک باشیم.
ترک مرکزی ناشی از جدایش

این ترکها وقتی رخ می‌دهد که ترکیباتی با نقطه ذوب پایین نظیر فسفر ، روی ، مس و گوگرد در نقاط خاصی در حین فرآیند سرد شدن جدایش یابند. در حین فرآیند انجماد ، ترکیباتی با نقطه ذوب پایین در فلز مذاب به نواحی مرکزی اتصال رانده می‌شود چون آنها تا آخرین ترکیباتی هستند که شروع به انجماد می‌کنند و جوش در این نواحی تمایل به تفکیک و جدایش می‌یابد. در جوشکاری می‌توان از الکترودهایی با مقادیر بالای منگنز استفاده تا بتوانیم بر تشکیل سولفید آهن با نقطه ذوب پایین غلبه کنیم. متاسفانه این مفهوم نمی‌تواند برای مواد غیر فرار دیگری بجز گوگرد بکار رود.
ترک مرکزی ناشی از شکل گرده جوش

نوع دوم ترک مرکزی ، ترک ایجاد شده در اثر شکل پالس جوش می‌باشد، این ترک در فرآیندهایی که همراه با نفوذ عمیق می‌باشند نظیر فرآیند FCAW , SAWتحت محافظ CO2 دیده می‌شود. وقتی که یک پالس جوشکاری دارای عمق بیشتری نسبت به هضم آن جوش (در نمای سطح مقطع) باشد. برای رفع این نوع ترک ، پالسهای جوش باید دارای عرضی حداقل برابر با عمق باشد. توصیه می‌شود که نسبت پهنای جوش به عمق آن برابر با ۱ به ۱۴/۱ به ۱ باشد تا این نوع ترک رفع شود. اگر از پالسهای چندتایی استفاده شود هر پاس دارای پهنای نبت به عمق آن باشد، یک جوش فاقد ترک خواهیم داشت. وقتی که یک ترک مرکزی بخار شکل پاس تحت بررسی است، تنها راه حل این است که نسبت پهنای جوش به عمق آنرا تغییر دهیم.
این موضوع شاید در برگیرنده آن باشد که تغییری در طراحی اتصالها داشته باشیم. از آنجایی که عمق جوش تابعی از نفوذ می‌باشد شاید مفید باشد که مقدار نفوذ را کاهش دهیم بدین منظور می‌توانیم از آمپرهای پایینتر و الکترودهایی با قطرهای بالاتر استفاده کنیم. راهکارهای فوق دانسیته جریان را کاهش می‌دهد و مقدار نفوذ را محدود می‌کند.
ترک مرکزی ناشی از شرایط سطحی جوش

آخرین مکانیسمی که سبب ایجاد ترک مرکزی می‌باشد تغییر شرایط سطحی می‌باشد. وقتی جوشهایی با سطح مقعر ایجاد می‌شود تنشهای ناشی از انقباضهای داخلی موجب می‌شود که سطح جوش کشیده شود. برعکس وقتی که سطح جوش محدب باشد نیروی ناشی از انقباضهای درونی موجب می‌شود که سطح جوش فشرده می‌شود. سطح جوش مقعر ، اغلب ناشی از ولتاژهای بالای قوس می‌باشد. کمی کاهش در ولتاژ قوس موجب می‌شود که گرده جوش به حالت محدب تغییر شکل دهد و تمایل به ترک حذف گردد. سرعتهای حرکت بالا نیز ممکن است به این موضوع کمک کند و کاهش در سرعت حرکت جوشکاری ، مقدار پراکندگی توسط جوش را افزایش می‌دهد و سطح جوش به صورت محدب تغییر حالت می‌دهد. جوشکاری در حالت قائم سر پایین باعث ایجاد این نوع ترک می‌شود. جوشکاری در حالت قائم رو به بالا می‌تواند از بروز این نوع ترک جلوگیری نماید.
ترک منطقه متاثر از جوش

ترک منطقه متاثر از جوش (HAZ) بوسیله جدایشی که بلافاصله مجاور گرده جوش رخ می‌دهد مشخص می‌شود، اگر چه این نوع ترک مربوط به فرآیند جوشکاری می‌باشد با این حال ترکی است که در روی پایه رخ می‌دهد نه درخود جوش. این ترک به نام تک مجاور جوش ، ترک گوشه‌ای یا ترک تاخیری نیز نامیده می‌شود. چون این ترک بعد از اینکه فولاد در دمای f ْ۴۰۰ انجماد یافته است رخ می‌دهد ترک انجمادی نیز نامیده می‌شود و چون با هیدروژن نیز همراه می‌باشد ترک همراه با هیدروژن نیز نامیده می‌شود. برای اینکه ترک HAZ رخ دهد سه شرط باید بطور همزمان برقرار باشد:

۱٫       باید مقدار کافی هیدروژن وجود داشته باشد.

۲٫       جوش باید به حد کافی نفوذ پذیر باشد.

۳٫       باید به حد کافی تنشهای داخلی یا پسماند وجود داشته باشد.

حذف یکی از سه شرط فوق معمولا باعث می‌شود که این نوع ترک از بین برود. در جوشکاری ، یک راه برای حذف این نوع ترک این است که دو یا سه متغیر (مقدار جوش نفوذ پذیر جوش) را محدود کنیم. هیدروژن از منابع مختلفی می‌تواند وارد جوش شد. رطوبت و ترکیبات آلی منابع اصلی هیدروژن در جوش می‌باشند. هیدروژن می‌تواند در فولاد ، الکترود ، ترکییبات روپوش الکترود و در آتمسفر وجود داشته باشد.
ترک عرضی

ترک عرضی ترک متقاطع نیز نامیده می‌شود. ترکی است که در جهت عمود بر طول جوش ایجاد می‌شود. این نوع ترک از انواعی است که اغلب در جوشکاری با آن مواجه می‌شویم و معمولا جوشی که دارای استحکام بالاتری در مقایسه با فلز پایه می‌باشد دیده می‌شود. این نوع ترک می‌تواند همراه با هیدروژن نیز باشد و کل ترک منطقه متاثر از جوش HAZ که پیشتر شرح داده شد ناشی از مقدار بالای هیدروژن ، تنشهای پسماند و ریز ساختارهای حساس می‌باشد.
فرق عمده بین این دو ترک این می‌باشد که ترک عرضی در فلز جوش نتیجه تنش پسماند طولی می‌باشد. چنانچه پاس جوشکاری بصورت طولی انقباض یابد، فلز پایه در مقابل این نیرو مقاومت می‌کند و در واقع دچار تراکم و فشردگی می‌شود. استحکام بالای فلز پایه‌ای که در مجاورت جوش می‌باشد در برابر فشردگی ناشی از انقباض جوش مقاومت می‌کند و در واقع فشرده شدن جوش را محدود می‌کند. بخاطر ممانعتی که فلز پایه به عمل می‌آورد، تنشهای طولی در جوش گسترش می‌یابد.

وقتی با ترکهای عرضی مواجه می‌شویم باید سطح هیدروژن و شرایط نگهداری الکترودها را مد نظر داشته باشیم. در مورد ترک عرضی ، کاهش استحکام فلز جوش معمولا یکی از راهکارهای حذف این نوع ترک می‌باشد. تاکید زیادی بر روی فلز جوش وجود دارد چون فلز پر کننده به تنهایی ممکن است جوشی رسوب دهد که دارای استحکام پایینتری باشد و نیز تحت شرایط عادی فلزی نرم باشد. البته با تاثیر عناصر آلیاژی استحکام جوش بالا می‌رود و از نرمی آن کاسته می‌شود. استفاده از جوشهایی با استحکام پایینتر ، یک راه حل موثر در کاهش ترک عرضی موثر می‌باشد، البته به شریطی که استحکام جوش با استانداردهای تعریف شده مطابقت داشته باشد.
پیچیدگی

پیچیدگی یا اعوجاج تا حدی در تمام انواع جوشکاری وجود دارد، در بسیاری موارد آنقدر کوچک است که به سختی قابل رویت است، ولی در بعضی موارد باید پیش از جوشکاری به اعوجاجی که متعاقبا ایجاد می‌شود توجه کرد. مطالعه و بررسی اعوجاج بسیار پیچیده است و آنچه در ادامه آمده خلاصه است:
علل اعوجاج هنگامی که فلز تحت بار ، کرنش می‌کند یا حرکت می‌کند و تغییر شکل می‌دهد: تحت بار گذاری ضعیف فلزات بصورت الاستیک باقی می‌مانند. (به شکل اصلی خود باز می‌گردند یا پس از اینکه بار برداشته شد شکل می‌گیرند) که این تحت عنوان محدوده الاستیک شناخته می‌شود.
تحت بار خیلی زیاد ، فلزات تا حدی تحت تنش قرار می‌گیرند که دیگر به شکل اول خود باز نمی‌گردند یا شکل نمی‌گیرند و این نقطه (نقطه تسلیم) نامیده می‌شود (تنش تسلیم).

فلزات با حرارت دیدن انبساط می‌یابند و وقتی سرد می‌شوند منقبض می‌شوند، فلزات در حین جوشکاری گرم و سرد می‌شوند که موجب تنشهای بالای ناگهانی و اعوجاج می‌شوند. اگر این تنشهای زیاد از محدوده الاستیک بگذرند و از نقطه تسلیم نیز رد شوند، برخی پیچیدگیهای دائمی در فلز پدید می‌آید، تنش فلز در دمای بالا کاهش می‌یابد. اعوجاج اثر ناخواسته انبساط و انقباض فلز حرارت دیده است.
انواع پیچیدگی

سه نوع اصلی پیچیدگی وجود دارد:

۱٫       زاویه‌ای

۲٫       طولی

۳٫       عرضی

کنترل پیچیدگی می‌تواند در سه مرحله انجام گیرد:

قبل از جوشکاری
حین جوشکاری
بعد از جوشکاری

کنترل پیچیدگی قبل از جوشکاری توسط روشهای زیر انجام می‌شود:

۱٫       خال جوش زدن

۲٫       گیره ، بست و نگهدارنده

۳٫       پیشگرم کامل و سرتاسری

۴٫       مونتاژ اولیه مناسب

کنترل اعوجاج پس از جوشکاری:

۱٫       سرد کردن آرام

۲٫       صافکاری شعله‌ای (حرارت دهی معکوس)

۳٫       آنیل کردن

۴٫       تنش زدایی

۵٫       نرمال کردن

۶٫       صافکاری مکانیکی

در سازه‌های فلزی ساختمان معمولا روشهای ۱و۲ بیشتر اعمال می‌گردد و سایر روشها در کارهای صنعتی بیشتر کاربرد دارند.
آنیل کردن

یک پروسه عملیات حرارت است که برای نرم کردن فلزات جهت کل سرد یا ماشین کاری بکار می‌رود، قطعه یا کار نهائی معمولا در کوره تا دمای بحرانی (برای فولاد با ۰٫۵۲% کربن حدود Cْ ۸۲۰ – ۷۲۳) حرارت داده می‌شود و سپس به آرامی سرد می‌شود.
تنش زدائی

حرارت دهی یکنواخت قطعات جوش شده تا دمایی زیر دمای بحرانی است که با سرد کردن آرام دنبال می‌شود، این پروسه نقطه تسلیم فلز را کاهش می‌دهد، لذا تنشهای باقی مانده در قطعه کاهش می‌یابد.
نرمال کردن

پروسه‌ای برای ریز کردن ساختار دانه‌ای فلز است که موجب بهبود مقاومت آن در برابر شوک و خستگی می‌شود. در نرمال کردن قطعات جوش شده تا بالای ‌دمای بحرانی (Cْ ۸۲۰ برای فولاد با کربن ۰٫۲۵% (تقریبا یک ساعت برای هر nm 25 ضخامت حرارت می‌بیند و سپس در هوا سرد می‌شود (مستقیم کاری).

منبع : welding-engineer

اصول لوله کشی بخش ۱

۱۳ تیر ۱۳۹۰

Gaskets :

Gasket ها یا واشرها جهت آب بندی مورد استفاده قرار می گیرند. واشرهائی که جهت آب بندی فلنج های تخت (Flat Face) به Full-Face Type موسومند و گسکت هائی که برای فلنج هایRaised Face استفاده می شود را Ring Type می نامند. شکلهای زیر دو نوع از « گسکت رینگی» و نمونه ای از نوع Flat است.

 

جنس مورد استفاده در گسکت ها معمولاً «آزبست» فشرده و یا  فلز غنی شده از آزبست است.نوع دوم به خاطر اینکه در موقع باز و بسته کردن زیاد آسیب نمی بیند بهتر است. انتخاب جنس واشر بستگی به نوع سیال خطوط و میزان فشار و دمای آن دارد همچنین در مورد خورندگی سیال نیز دقت شود تا گسکت مناسبی انتخاب گردد.نوعی گسکت Flat نیز نیز بنام Spiral Wound داریم که قسمتی از آن بصورت فنری است.در زیر شکل این گسکت آمده است.

 

در انتخاب نوع گسکت، سختی گسکت نیز مهم است.بطوریکه کارخانجات سازنده علاوه بر مشخصات گسکت ، سختی برینل هم ذکر می گردد.استانداردهائی که در آنها در مورد گسکت و نحوه انتخاب آن توضیحاتی آمده است شامل ASME B16.21 & ASME B16.20  است.ASME B16.21 در مورد گسکت های غیر فلزی است.این استاندارد شامل جداول اندازه ، تولورانس گسکت ها برای فلنج های چدنی است.

 

سوراخ پیچ در فلنج :

تعداد سوراخ های پیچ و قطر آنها بستگی به سایز فلنج و کلاس فشاری آن دارد.محل قرارگیری سوراخ فلنـــج ها طوری است که چهار سوراخ در روی خطوط عمودی و افقی گذرنده از مرکز قرار نمی گیرند.زاویه بین خط مرکز و اولین سوراخ برابر است با ۳۶۰ تقسیم بر دو برابر تعداد سوراخها و زاویه بین هر دو سوراخ نیز برابر ۳۶۰ درجه تقسیم بر تعداد سوراخها است.

بطور مثال اگر تعداد سوراخها ۴ عدد باشد، زاویه بین خط افقی و اولین سوراخ برابر : ۴۵=۲*۴/۳۶۰ است و زاویه بین سوراخها ۹۰ درجه است.در شکل مقابل آرایش ۸ تائی را نمایش می دهد.  

 

با توجه به اینکه Stud bolt به راحتی باز و بشته می شود اکثراً از این نوع پیچ برای بستن فلنج ها در نظر گرفته می شود .از مزیت های دیگر این نوع پیچ این است که با سایر پیچ هائی که در ساختمان تجهیزات دیگر استفاده می شود متمایز است و در هنگام ساخت و نصب امکان اشتباه بستن این پیچ به تجهیزات دیگر کاهش می یابد..همچنین این نوع پیچ در سایزهای مختلف یافت می شود. محاسبه طول پیچ بوسیله فرمول زیر صورت می گیرد.

 

جوشکاری ریل و روشهای تست غیر مخرب به روش مافوق صوت

۱۳ تیر ۱۳۹۰

جوشکاری ریل و روشهای تست غیر مخرب به روش مافوق صوت (Nod-Destructive-Testing, Ultrasonic)

دستگاه های تست اولتراسونیک در خطوط ریلی راه آهن چه چیزی را تست می کنند؟
از روش تست اولتراسونیک به دلیل هزینه تمام شده کم و دقت و سرعت تست بالا برای تست غیر مخرب ریل ها و جوش ها استفاده می شود. باید دقت داشت، با اینکه در خطوط ریلی، نسبت طول (۱۸، ۳۶ متر در ایران) ریل به طول جوش (۲۵ میلیمتر + ۱۰۰ میلیمتر منطقه HAZ) بسیار بزرگ تر است، اما در عمل نسبت عیوب تشخیص داده شده در نقاط جوشکاری شده بسیار بیشتر است. یعنی عملا بیش از ۸۰% عیوب آشکار شده در خطوط ریلی مربوط به نقاط جوشکاری هستند. عیوب ایجاد شده در ریل ها بسیار کم اتفاق می افتند زیرا کارخانه های تولید ریل دارای سیستم کنترل کیفی و ایستگاه تست اولتراسونیک پیوسته هستند و احتمال وقوع عیوب در داخل ریل بسیار کم است. یک دسته عیوب دیگری نیز عیوبی هستند که در زمان حمل و نقل و استفاده از ریل ها ممکن است ایجاد شوند که عملا با هیچ دستگاهی قابل شناسایی و قابل ردیابی نیستند. لذا باید توجه داشت که به سادگی نمی توان همه عیوب را شناسایی کرد و به سادگی نمی توان به منشاء پیدایش همه عیوب دست یافت.
با تفاسیر فوق به این نتیجه می رسیم که عمده عیوبی که توسط دستگاه های تست باید بررسی شوند، عیوب مربوط به جوشکاری ها می باشند. امروزه تقریبا تمامی خطوط ریلی احداث شده جوشکاری می شوند و فقط زمانی که جوشکاری ریل ها باعث بروز مشکلات ایمنی و بحران جدی (تغییرات دمایی بسیار بالا، ریسک کمانش و فرار خط، شیب و فراز های بسیار تند، طرفین دهانه پل، طرفین سوزن) گردد، از جوشکاری ریل ها صرف نظر می شود. تمایل به جوشکاری ریل ها آن چنان زیاد است که در بعضی خطوط باری (در کشور برزیل، استرالیا، سوئد)، که عمر ریل ها به دلیل بار محوری بالا (بیش از ۳۵ تن) و سایش زیاد کمتر از یک سال است، همچنان ریل ها جوشکاری می شوند و از اتصال مکانیکی (فیش پلیت و پیچ و مهره) استفاده نمی شود.
جوشکاری ریلها، یکی از عملیات مهم در احداث خطوط جدید، نگهداری و تعمیرات خطوط موجود و بازسازی خطوط قدیمی محسوب می شود. روشهای جوشکاری متداول در صنعت ریلی عبارتند از جوشکاری به روش قوس الکتریک (Electric Flash Butt)، جوشکاری به روش ترمیت (Thermite) و جوشکاری به روش شیار باریک (Narrow Groove).
جوشکاری ریل ها در خطوط جدید الاحداث عمدتا باید توسط روش قوس الکتریک انجام شود و برای عملیات تعمیرات و تعویض بخش های صدمه دیده از جوشکاری ترمیت استفاده می شود. جوشکاری به روش شیار باریک در اکثر کشورها هنوز تایید نشده و از این روش بسیار کم استفاده می شود. جوشکاری شیار باریک در جوشکاری نقاط داخل قوسهای تند (با شعاع کمتر از ۵۰۰ متر) و درزهایی که امکان دسترسی تجهیزات جوشکاری دیگر وجود ندارد مطرح می شود. در ایران بخش عمده ای از جوشکاری های خطوط جدید به روش قوس الکتریکی، بخشی از خطوط قدیمی و جوشهای ترمیمی به روش ترمیت انجام شده است. اکثر جوشکاری خطوط مترو (تهران، شیراز، اصفهان، تبریز) به صورت جوشکاری ترمیت (با روش پیش گرمایش طولانی و قالب نوع Skv) و در خط ۱ مترو مشهد، جوشکاری شیار باریک انجام شده است.
انواع دستگاه های تست اولتراسونیک:
تا کنون ۳ نوع وسیله تست اولتراسونیک برای تست ریل و جوش ابداع شده اند. تقریبا تمام دستگاه های موجد در بازار را می توان به سه نوع زیر طبقه بندی کرد.
• دستگاه نیمه اتوماتیک دستی تست اولتراسونیک
• خودرو دو منظوره ریلی-جاده ای تست اولتراسونیک
• واگن ریلی تست اولتراسونیک
خدمات قابل ارائه :
• فروش دستگاه نیمه اتوماتیک ۷ کاناله اولتراسونیک ریل و جوش
• آموزش راه اندازی و کاربری دستگاه نیمه اتوماتیک ۷ کاناله اولتراسونیک ریل و جوش
• فروش و آموزش کاربری خودرو ریلی – جاده ای تست اولتراسونیک ریل
• دستور العمل جوشکاری طبق استاندارد راه آهن استرالیا
• دستور العمل تست اولتراسونیک طبق استاندارد راه آهن استرالیا
• مشاوره جهت تعیین معیار رد و پذیرش عیوب ریل (Acceptance Criteria)
• مشاوره فنی-اقتصادی جهت انتخاب روش و دستگاه های تست اولتراسونیک ریل و جوش
• برآورد هزینه پروژه تست غیر مخرب ریل با دیگر روشهای NDT

منبع :

سید محمود میرهاشمی
کارشناس ریلی شرکت مکرر (www.mtes.ir)
mirhashemi@mokarrar.com

مقدمه ای بر آزمون های غیر مخرب NDT

۱۳ تیر ۱۳۹۰

مقدمه ای بر آزمون های غیر مخرب
Non Destructive Tests (NDT)

مقدمه
ضرورت بازرسی

در ماده یا قطعه در حین ساخت، انواع نقصها با اندازه های متفاوت ممکن است به وجود آید که ماهیت و اندازه دقیق این نقص، کارکرد آتی قطعه را تحت تاثیر قرار می دهد. نقصهای دیگری مانند ترکهای ناشی از خستگی یا خوردگی، در حین کار با ماده نیز ممکن است به وجود آید. بنابراین برای آشکارسازی نقصها در مرحله ساخت و همچنین برای آشکارسازی و مشاهده آهنگ رشد آنها در حین عمر کاری هر قطعه یا مجموعه باید وسایل قابل اعتمادی در اختیار داشت.

انواع سیستمهای بازرسی

تستهای مخرب(DT)

در این نوع تست آزمایشهای مختلف بر روی نمونه های استاندارد تهیه شده از قطعات مورد آزمون انجام می شود و پس از انجام تست نمونه از بین می رود.

محدودیتهای روش: سرعت پایین

پر هزینه بودن

ارائه اطلاعات فقط مربوط به نمونه ها

تستهای غیر مخرب (NDT)

تست یا بازرسی غیر مخرب به روش هایی از بازرسی اطلاق می شود که در آنها کارایی یک قطعه بدون تغییر یا از بین رفتن آن قطعه، مورد بررسی قرار می گیرد.

تفاوتهای DT و NDT:

  1. در روش های DT پس از اعمال آزمایش، قطعه کارایی خود را از دست می دهد
  2. در روش های DT نمی توان تمام محصولات را تحت آزمایش قرار داد و باید به صورت random تعدادی از نمونه ها را تحت آزمایش قرار داد.
  3. در روش های DT نیاز به تهیه نمونه استاندارد وجود دارد که برای آزمایش های مختلف متفاوت است.

l      آزمایشهای DT و NDT در عرض یکدیگر قرار ندارند و انجام یک تست باعث بی نیازی از تست دیگر نمی شود.

عیوب قابل تشخیص با NDT  :

عیوب ناشی از مواد اولیه

•  جدایش

•  ناخالصی

•  آخالهای سرباره

•  تخلخل های گازی

•  تخلخل های انقباضی

عیوب ناشی از روش ساخت

•  شکل دادن

•  متالورژی پودر

•  جوشکاری

•  عملیات حرارتی

•  ماشینکاری

عیوب ناشی از مونتاژ قطعات

•  ترک ناشی از تنش اضافی

•  عیوب ناشی از جوشکاری اضافی

•  مونتاژ نادرست

•  قطعات جا افتاده

عیوب ناشی از کارکرد

•  ناپایداری حرارتی

•  خزش

•  سایش

•  خوردگی تنشی

•  خوردگی

•  خستگ

المان های بازرسی غیر مخرب

    1. منبع انرژی
    2. یک قطعه کار متناسب با منبع انرژی
    3. قطعه آزمون برای اندازه گیری تفاوت ها
    4. وسیله ای برای نشان دادن و ثبت نتایج آزمون
    5. اپراتور آموزش دیده
    6. دستور العمل برای انجام تست
    7. سیستم گزارش نتایج

روش های متداول NDT

  1. بررسی چشمی (VT)                Visual Test
  2. بازرسی با مایعات نافذ (PT) Liquid Penetranat Test
  3. بازرسی با ذرات مغناطیسی (MT) Magnetic Particle Test
  4. رادیوگرافی (RT)          Radiographic Test
  5. بازرسی با جریان گردابی (ET) Eddy Current Test
  6. بازرسی با امواج اولتراسونیک (UT)       Ultrasonic Test
  7. بازرسی با انتشار امواج صوتی (AET)     Acoustic Emission Test

مراحل NDT

مرحله اول: استفاده از یک خاصیت فیزیکی جسم و محیط تست

مرحله دوم: تغییر در خاصیت فوق به دلیل وجود عیب

مرحله سوم: آشکار سازی تغییر ایجاد شده به کمک یک آشکارساز مناسب

مرحله چهارم: تبدیل تغییر آشکار شده به نحوی که قابل تفسیر باشد

مرحله پنجم: تفسیر نتایج

تعاریف اولیه

ناپیوستگی (Discontinuity): هر گونه اغتشاش در خواص متالورژیکی یا مکانیکی یا فیزیکی جسم ناپیوستگی نامیده می شود.

عیب (Defect): ناپیوستگی هایی که باعث شود خواص استاندارد قطعه از بین رود، عیب نامیده می شود.

یک ناپیوستگی لزوماَ عیب نیست.

ارسال یاداشت